NISTADS REPORT : #REP-248/98

National Mapping of Science

A bibliometric assessment of India's Scientific Publications based on Science Citation Index (1990 & 1994)

Aparna Basu and P.S. Nagpaul

National Institute of Science Technology, and Development Studies Dr. K.S. Krishnan Marg, New Delhi 110 012, INDIA

March 1998

Preface

In a country of the size of India with a large scientific establishment, it becomes imperative to have up-to-date statistics on inputs into the scientific system, such as funds or manpower, as well as output in the form of publications, patents and projects. While information on inputs is regularly disseminated by the Department of Science and Technology through their reports, detailed output statistics are not so readily available. One reason for this gap is the dispersed nature of the information which makes any comprehensive compilation a difficult task. On the other hand, commercial databases of abstracting and citation services provide us access to the bibliographic details of the papers from any country published in the journals covered by the abstracting service, without the need to compile them from output details of numerous institutions all over the country. The present study is exploratory in nature using bibliometric techniques to analyse data from only two editions (1990 and 1994) of the Science Citation Index. The activity should be repeated at regular intervals of one or two years in order to provide a factual account of India's scientific activity on a continuing basis.

The double role of research publications both as an output of certain activities (i.e. reporting of research results) and as an input to another set of activities (which cite the study used) make it a useful indicator of scientific research. Without going into questions of how, or if at all, two published units are comparable, we simply say that the number of publications provides a 'count' or quantitative measure of output that can have a certain aggregate *impact* on the research system and may therefore be considered as a primary indicator of research activity. The count of citations acts as a measure of the *usefulness* of a research in the subsequent stages of the collective process of scientific knowledge generation, and provides a second indicator that is independent of the first.

There have been extended and continuing debates on the utility of simple counts as a measure of scientific activity, whether these counts can reflect the quality of science, its relevance, or, indeed, if it can replace peer evaluation. While these issues are still under discussion, it may perhaps be emphasized here that bibliometric methods are valid only in a statistical sense and may be suitable for large groups or institutions and nations rather than individuals. For the latter, peer assessment must be used alongside other indicators. Quality of research is often difficult to ascertain except by hindsight. Yet it is important for funding agencies and policy makers to assess the output of specific programs or institutions. The routine generation of bibliometric indicators gives a ready means of comparative evaluation of national output vis-a-vis other nations, or of states, sectors or institutions. Keeping the above mentioned requirements in mind, the study titled National Mapping of Science was begun as a national level exercise to be executed by several groups from all over the country. The study was initiated and sponsored by the National Information System for Science and Technology (NISSAT), Department of Scientific & Industrial Research (research grant No. JSF/1496/96).

The objective was to analyse Indian scientific publications appearing in a number of commercial bibliographic databases. The database to be analysed at the *National Institute of Science Technology and Development Studies* (NISTADS) was the *Science Citation Index* (SCI). The parameters of the study included,

- 1. Output in different scientific fields & subfields
- 2. Journals used and Impact Factor of publications
- 3. Output at the state, sectoral and institutional levels
- 4. Collaboration patterns

Citations have not been considered.

This study could not have been completed without the dedicated efforts of the team members; Shri P.S. Nagpaul (*Project Investigator*) who provided the intellectual support and journal classification scheme and Chapters 10 & 11 of the study report, and who was the source of a steady stream of ideas and suggestions based on his extensive knowledge of current literature, Shri K.C. Garg who provided the country of publication of journals from Ulrich Directory, Smt. Ritu Aggrawal who undertook the major task of creation of database, programming and graphics, Shri Narendra Kumar who undertook the word processing, data classification and input, Shri B.S. Vinu Kumar, who painstakingly cross-checked data, and helped with tables, graphics and report preparation. It is my pleasure to acknowledge their contribution. Every member of the Business Promotion Group at NISTADS has helped on a day to day basis - Drs. P.V.S. Kumar and Radha Chakravarty, Shri S.A. Nabi and Shri P.K. Nair. NISTADS staff have provided assistance on every occasion. I would like to thank each one of them and all colleagues who have provided friendly advice and support.

We are deeply indebted to NISTADS director Dr. Ashok Jain, for guidance, encouragement and support throughout the study period and for infrastructural facilitites.

We also express our gratitude to NISSAT Advisor Dr. A. Lahiri for his generous help and advice and Smt. Sreedevi Ravindran and Smt. Kamini Mishra of NISSAT for their help in matters related to administrative details of the project.

Apama Basu (on behalf of research team)

National Mapping of Science

A bibliometric assessment of India's Scientific Publications based on Science Citation Index (1990 & 1994)

Contents

Part I : Mapping of Indian Science using Bibliometrics		Page
1	Executive Summary	1
2	Introduction	25
3	Methodology	29
5	Journals used by Indian Scientist	53

6 Scientific Output in the Major Discipline $/$	
7 Sectoral Output in the basic Scientific Disciplines	
8 Scientific Output of States	157
9 Scientific Output of Institutions	183
10 A Structural Analysis of Research Output	197
11 Interstate Collaboration	221
References	236

Appendices

- 1. Major Scientific Agencies and Other Departments
- 2. Countries with international ISO codes
- 3. Classification of Fields and Sub-fields
- 4. States and Union territories of India

	Part II : Data Tables	Page
1.	Publication output in Major Scientific Disciplines	AI
2.	Ranked list of Journals with Country of Publication & Impact Factor	A II
3.	State-Wise list of Institutions with Publication output.	A III
4.	Publication output of Agencies, Academic and Other Sectors.	A IV
5.	Document Type.	AV

List of Figures

Fig No.	Figure	Page
1.1.1	Papers from India & Indian Journals in Science Citation Index	2
1.2.1	Distribution of Impact Factor by Document Type	5
1.3.1	Papers in Major Disciplines in 1994 & Change from 1990	7
1.4.1	Percentage Output of Publication & Average IF per paper (Major Scientific Agencies)	9
1.5.1	Output of Scientific Publications from Indian States - 1994	10
1.5.2	Annual Publication Output of Indian states (per lakh population)	11
1.6.1	Scientific Publication Output of Indian Institutions in Major Disciplines	15
	contd.	16
	contd.	17
1.7.1	Foreign Collaborations in Major Disciplines as a percentage of Output	19
1.7.2	Change in the No of Bi-lateral & Multi-lateral Collaborations 1990 - 94	19
1.8	Network of Inter-state Co-operation -1994	21
1.9	Summary of Correspondence Analysis (1994)	22
4. i	Indian Publications in International Journals (by country of publication)	39
5.1	Number of Indian papers in 1994 & change from 1990	54
5.2	Percentage change in publication output : 1990 - 1994	56 - 60
5.3	Distribution of Papers in the IF Range 0-40	63 - 64
6.1a	Percentage contribution of Major Sectors 1990	82
6.1b	Percentage contribution of Major Sectors 1994	82
6.2a	Percentage contribution of Major Scientific Agencies 1990	89
6.2b	Percentage contribution of Major Scientific Agencies 1994	89
6.3a	Indian Scientific Output & change of Major Scientific Agencies (90- 94)	90
6.3b	Indian Scientific Output & change of Major Scientific Sectors (90-94)	90
7.1a	State-wise Output for 1994 (All Disciplines)	97
7.1b	State-wise Output for 1990 (All Disciplines)	98
7.1c	Annual Output per lakh population of States	100
7.2a	Classification of States based on Output & Average Impact Factor in Major Disciplines - A Comparison with the National Averages 1994	110 - 111
7.2b	Classification of States based on Output & Average Impact Factor in Major Disciplines - A Comparison with the National Averages 1990	112 - 113
-	Output of States in Major Disciplines 1990 & 1994 (Sum, Difference, Cumulative Percentage)	115 - 126

.

contd...

iv

List of Figures (....continued)

Fig No.	Figure	Page
-	Institutional Output in 1990 & 1994 in Different Disciplines	171 - 182
9. la	Foreign Collaborations in Major Disciplines as Percentage of Output	193
9.1b	Change in the No of Bi-lateral & Multi-lateral Collaborations ('90 -'94)	193
10.1	Correspondence Analysis map of research profile- 1990	204
10.2	Correspondence Analysis map of research profile- 1990	206
10.3	Correspondence Analysis map of research profile- 1994	210
10.4	Correspondence Analysis map of research profile- 1994	212
10.5	Summary of Correspondence Analysis (1990)	214
10.6	Summary of Correspondence Analysis (1994)	215
10.7	Correspondence Analysis Map Showing Deviation (in Research Output) between 1990 & 1994 (Maharashtra to West Bengal)	218
10.8	Correspondence Analysis Map Showing Deviation (in Research Output) between 1990 & 1994 (Andhra to Kerala)	219
11,1	Network of Inter-state Co-operation -1990	228
11.2	Network of Inter-state Co-operation -1994	229
11.3	Blockmodel of Inter-state Co-operation 1990	234
11.4	Blockmodel of Inter-state Co-operation 1994	235

List of Tables

.

v

Tab No:	Table	Page No:
1.2.1	Percentage of papers in categories by type	5
1.3.1	Main characteristics of publications in the Major Disciplines	6
1.3.2	The National Average Impact Factor of Major Disciplinary Fields	6
1.3.3	Output & change in Sub-disciplinary areas in the Major Disciplines	7
1.4.1	Major Sectors & their Scientific Publication Output	8
1.4.2	Output of Major Scientific Agencies	8
1.5.1a	Classification of States based on Output & Average Impact Factor 1990	13
1.5.1b	Classification of States based on Output & Average Impact Factor 1994	13
1.7.1a	Foreign Collaborations in Indian Publications : An Overview	18
1.7.1b	Foreign Collaborations in Major Disciplines 1990 & 1994	18
1.7.2	Frequency of India's Foreign Collaborations in 1990 & 1994	20
4.1	Papers in Journals published from different countries	36
4.2	List of Indian Journals occurring in SCI Data 1990-94	- 38
4.3	Selected Journals carrying Indian papers ranked by Impact Factor and use	39 - 51
5.1	Output of Different Disciplines in Science	53
5.2	Output & change in Sub-disciplinary areas in the Major Disciplines	55
5.3	National Average Impact Factor of Major Disciplines	62
	Research Profiles of Individual Disciplines	66 - 77
6.1a	Major Scientific Agencies, Other Ministries & Departments of the Govt.	80
6.1b	Scientific Publication Output of Major Sectors in India (SCI Data)	81
6.2a	Sectoral Output of Scientific papers by Discipline 1994	83
6.2b	Sectoral Output of Scientific papers by Discipline 1990	84
6.3a	Average Impact Factor of Sectoral Output by Discipline -1994	86
6.3Ъ	Average Impact Factor of Sectoral Output by Discipline - 1990	87
6.4	Sector-wise change from 1990 : Major Scientific Agencies	93
6.5	Performance of the Sectors in Different Disciplines 1994	94
7.1a	Publication Output for States in Different Disciplines 1994	102
7.1b	Publication Output for States in Different Disciplines 1990	103
7.1c	Change in Output of States in Major Disciplines from 1990 to 1994	104
7.2a	Average Impact Factor of States in Different Disciplines 1994	106
7.2b	Average Impact Factor of States in Different Disciplines 1990	107
7.3	Classification of States based National Average & Impact Factor 90 -94	109
		contd

List of Tables (....continued)

Tab No	Table	Page
8.1a	Top 20 Institutions in Various Disciplines	158 - 163
8.1b	Scientific Output of Indian Institutions in Major disciplines (Top 50) 1994	165
8.1c	Scientific Output of Indian Institutions in Major disciplines (Top 50) 1990	166
8.2a	Categories of Institutions in terms of Output & Impact Factor 1994	168
8.2b	Categories of Institutions in terms of Output & Impact Factor 1990	1 69
9.1	Frequency of India's Foreign Collaborations in 1990 & 1994	185
9.2a	Foreign Collaborations in various disciplines - 1994	187
9.2b	Foreign Collaborations in various disciplines - 1990	188
9.2c	Change Matrix for International Collaborations	189
9.3a	Countries Collaborating with India in various disciplines 1994	190
9.3b	Collaboration with South Asian Countries	. 191
9.4	Bi-lateral & Multi-lateral Collaborations in Major Disciplines	192
9.4a	Foreign Collaboration in Indian Publication : An Overview	194
9.4b	Foreign Collaboration in Major Disciplines	194
9.5	Indian Publication Output and Interstate Co-operation in Science Fields	195
10.1	Publication Output for States in Different Discipline 1990	198
10.2	Publication Output for States in Different Discipline 1994	199
10.3	Contribution of Explicative points to the composition of factorial axes (Ctr)* (Research Output)	202
10.4	Contribution of Explained points to the eccentricities of factorial axes $(\cos^2 \phi)^*$ (Research Output)	203
10.5	Contribution of Explicative points to the composition of factorial axes (Ctr)* (Research Output)	207
[0.6	Contribution of Explained points to the eccentricities of factorial axes $(\cos^2 \phi)^{\bullet}$ (Research Output)	208
11.1	Inter-state Collaborations Matrix 1990	220
11.2	Inter-state Collaborations Matrix 1994	221
11.3	Overall Characteristics of Networks	222
11.4	Eigenvector centralities of different states	224
11.5a	Density of links between blocks for 1990	230
11.5b	Image Matrix for 1990	230
11.6a	Density of links between blocks for 1994	231
11.6b	Image Matrix for 1994	231

RESEARCH TEAM

1. Ashok Jain

Ph.D (Physics), Director, National Institute of Science, Technology & Development Studies(NISTADS).

- P.S. Nagpaul (Project Investigator)
 M.Sc (Statistics), Retd. Scientist, National Institute of Science, Technology & Development Studies(NISTADS).
- 3. Aparna Basu (Co-investigator)

Ph.D (Physics), Scientist, National Institute of Science, Technology & Development Studies(NISTADS).

4. K.C. Garg

M.Sc(Math), Scientist, National Institute of Science, Technology & Development Studies(NISTADS).

5. Ritu Aggarwal

B.A(English), Project Assistant, Diploma in Computer Applications.

- B.S. Vinu Kumar
 M.Sc(Tech), Project Assistant.
- 7. Narendra Kumar Project Assistant.

Executive Summary

1.1 Mapping of Indian Science: A Bibliometric Viewpoint

The mapping of Indian science based on bibliometric analysis was begun as an exploratory exercise with data for two years (with an interval of four years) from the Science Citation Index [1]. The objective was to extract information on India's scientific activity through an analysis of its publications from information readily available in the public domain, and to critically assess if this tool gave a meaningful picture of India's scientific activity. Another objective was to build up a database of Indian publications from which long and short term changes could be analysed. It needs to be emphasized at the outset that bibliometric techniques are statistical and their validity relies upon using a large volume of data extending over a sufficient period of time. Too much stress should therefore not be put on actual numbers or counts, but on eliciting underlying patterns . This is especially true when the numbers are small.

Choice of database: The Science Citation Index (*SCI*) is brought out annually on CD-ROM by the Institute for Scientific Information, USA (*ISI*). Although it covers as many as 4000 journals in all fields of science, nevertheless it can only give a partial account of the publications for any country including India, due to lack of comprehensive coverage of journals. This point must be kept in mind while discussing India's output of scientific papers based on SCI data. Over the last decade, Indian journals included in the *SCI* have declined from a high of 40 journals to the present value of 12 journals. The coverage of Indian journals and papers in both domestic and international journals in the SCI over the years is shown in Figure 1.1.1.

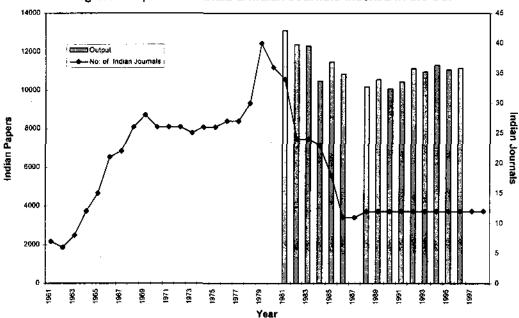


Fig 1.1.1 Papers from India & Indian Journals indexed in the SCI

Other subject specific data-bases may offer a larger coverage of Indian scientific output, but seamless merging of data bases is not without its problems. Journals are included by *ISI* on the basis of certain selection criteria and standards. Coverage is less for countries publishing in languages other than English. While India does not have a problem in this respect, it does publish a large number of scientific periodicals that are not included in SCI. The adequacy of coverage of Third World science in SCI has been a subject of debate[2]. In spite of these problems, several countries have based their national performance evaluation on the Science Citation Index (Mexico, Australia, UK, Hungary). The *SCI* also lists the addresses of all authors of a paper and thus provides valuable information on international and domestic linkages. It is the only database that gives information on citations, which provides an independent dimension of the extent of utilization of research.

1.2 Data Processing, Enhancement and Methodology

The publications from the SCI database were selected as being Indian on the basis of the geographical location in India of any of the authors. In this study, more than 20,000 records of publications with journals, titles, multiple authors and addresses (comprising the Indian output for the years 1990 and 1994 indexed in the SCI,) were converted into a useable database. This was followed by classification of journals into disciplinary areas based on a methodology developed by Computer Horizons, Inc. (CHI). Journal Impact Factors¹ for 1994 and country of publication were introduced manually from the 1994 edition of the Journal Citation Report (JCR) [3] and Ulrich Directory [4]. The data in the address field were cleaned to remove multiple versions of the same address, and reduce addresses to a standard form. States and cities were extracted or introduced wherever missing. The addresses were coded to conform to the Directory on R&D Institutions [5] published by the Department of Science and Technology (DST).

1.2.1 Parameters of analysis

The parameters based on which we draw our conclusions regarding the state of Indian science as seen through its publications, are the following:

- 1. Number of scientific publications in different disciplines.
- 2. Change over the period 1990 to 1994
- 3. Impact factor and country of the Journals carrying Indian papers.
- 4. Output of different sectors in the major disciplines
- 5. Output of states in the major disciplines
- 6. Output of the major institutions
- 7. Collaboration patterns, both foreign and domestic
- 8. Structural Analysis

Information on titles, authors and references, also included in the database, were not utilised in this study.

<u>A note on multiple counts</u>: In collaborative papers, more than one individual, institution, state, sector or country may be associated with a single paper. Each one of them is assigned a full count for the paper while totalling the respective contribution to the publication output. This procedure does not undervalue collaborative work. However the total of the sectoral, state or institutional output will exceed the national output.

¹ A measure of journal use, defined in Chapter 3, as the ratio of citations received in a given year to the number of publications in the previous two years.

1.2.2 Performance Indicators

In order to obtain effective comparisons between units, such as states, which vary considerably in size and volume of output, we have used bibliometric indicators, viz. *Average Impact Factor, State level Activity Index* and *Visibility Index*²(defined below,) apart from measures such as the *Network Centrality Index*

Impact factor of a journal is defined as the ratio of

number of citations to a journal in a given year / number of publications in the previous two years.

Average Impact Factor is defined as

Total Impact factor of all papers / Total number of papers

Activity Index of a state is defined as

Fraction of papers in a given discipline by state/ Fraction of papers in the same discipline in the country.

Visibility Index of X(state/institution/sector) in a given discipline Y is defined as

Fraction of cumulative impact of X in a given discipline Y/Fraction of Cumulative impact in the discipline Y in all X

Other details of methodology are given in Chapter 3.

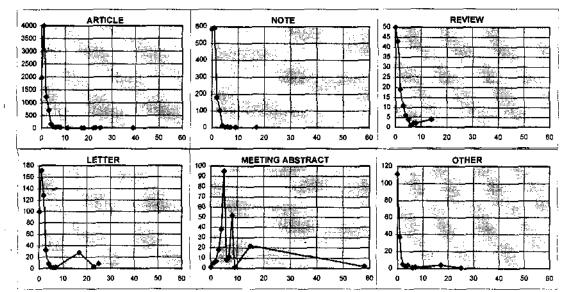
<u>International comparisons</u> have not been made as that would require inputs from the total world data. Direct comparisons with the work of Braun et.al [6] on international output may also not be accurate due to differences in the classification scheme.

 $^{^{2}}$ <u>A note on Impact Factor</u>: In this study we have only used the journal Impact Factors for 1994. Thus, the calculations of impact for the other year 1990 merely reflect the proportional change of papers in journals of a given IF in 1994, without being altered by the actual citation levels of the journals in 1990. In a sense this procedure separates out the change in IF that would arise from changes in journal standing, from those changes that are due to, say, a decline in the number of papers published in prestigious journals.

1.2.3 Type of Document

The SCI categorizes documents (papers) in terms of their type. The proportion of Indian publications in the different categories is indicated below

ТҮРЕ	1990	<u> </u>	ТҮРЕ	1990	1994
Article	78.9	77.0	Review	1.1	1.4
Note	13.2	13.4	Editorial	0.7	0.9
Letter	4.5	4.3	Discussion	0.2	0.3
Meeting Abstract	1.5	2.3	Biographical Item		0.2


Enal Land
Table 1.2.1 Percentage of Papers in Categories by Type

We have included papers (n) all categories in this study. The proportion of papers by type for all the different disciplines is tabulated in Part II (Table 5, pg. AV.1).

The Impact Factor of documents of different types show interesting variations. For example the IF of journals that publish meeting abstracts have higher impacts. The distribution of Impact Factor by type of document is shown below in Fig. 1.2.1

Fig 1.2.1 Distribution of Impact Factor by Document Type

هره

1.3 Major Disciplines in the Sciences³

Our data on India's publication output in the main disciplinary areas, viz Mathematics, Physics, Chemistry, Biology, Earth & Space Sciences, Agriculture, Clinical Medicine, Biomedical Research, Engineering & Technology, Computers & Communication Materials Science and Multidisciplinary, shows that there has been growth in every discipline except Agriculture, which has declined. Other features are indicated below:

Highest Output '94	Highest growth '90 - '94
Chemist r y,	Biomedical Research
Physics,	Physics
Clinical Medicine	Engineering
Highest Average Impact Factor '94	<u>Decline '90 - 94</u>
Medicine	Agriculture
Physics	· ·
Biomedical Research	

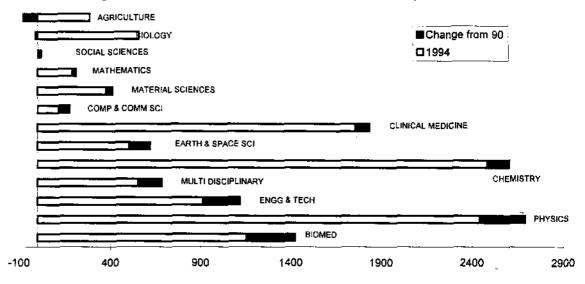

Table 1.3.1 : Main Characteristics of Publications in the Major disciplines

Table 1.3.2 indicates considerable variation in the national averages of the IF of different disciplines. This could be due to intrinsic reasons such as variations in the citation practices of different disciplines. If the values different significantly from world averages it points to a country specific cause, e.g. a low national average in a discipline may indicate that publications are not appearing in the most cited journals in the field.

Table 1.3.2 : The National Average	Impact Factor in the M	lajor Disciplinary Fields
------------------------------------	-------------------------------	---------------------------

Maths	0.523	Clinical Medicine	1.917
Physics	1.607	Biomedical Research	1.576
Chemistry	1.262	Engineering & Technology	0.591
Biology	1.432	Computer & Communication Sciences	0.797
Earth & Space Sciences	0.812	Material Sciences	0.786
Agriculture	0.683	Multi Disciplinary	0.814
	Total	1.333	

For details of sub-disciplines please see Chapter 5. For disciplinary profiles see section 5.4.

Fig 1.3.1 Papers in Major Diciplines in 1994 & Change from 1990

Changes in the output of papers in major disciplines are indicated in Fig. 1.3.1. The highest output of papers was in Chemistry, Physics, and Clinical Medicine, while the largest increase was in Biomedical Research and Physics. Papers on Agriculture showed a decline in this period.

1.3.1 Sub-disciplinary fields

The growth or decline in the sub-disciplinary fields within each major discipline are shown in Figure 5.2. The areas of marked change are shown in Table 1.3.3

Highest Output '94	Highest growth '90-'94
General Physics (560) Biochemistry and Molecular Biology (417) Physical Chemistry (372) Botany Plant science (332) General Materials Science (301)	Interdisciplinary Computer Applications (700%) Characterization of materials (700%) Embryology (400%); Virology (325%) Nephrology (325%); Urology (233%) Neurology & Neurosurgery (182%) Haematology (178%); Addiction (167%); Opthalmology (132%) Remote Sensing (217%) Aerospace Technology (141%)
Highest Average Impact Factor '94	<u>Maximum decline '90 - 94</u>
General & Internal Medicine (22.673) General Biology (15.115) Cancer (9.455)	Agricultural Economics and Policy (-75%) Psychology and Behavioural Science (-75%) Software & Graphics (-100%)

Table 1.3.3 Output and Change in Sub-disciplinary areas in the Major Disciplines

1.4 Sectoral output of Scientific Publications and Impact

Analysis of the data by sector indicates that overall output in the different sectors has increased. In terms of relative contributions sectoral output shows no major changes between '90 & '94. The output from the Academic Sector (universities) has declined while that in the Other Academic (deemed universities, etc.) has increased (Table 1.4.1). The proportion of papers from the Agencies has increased (more details in Chapter 6).

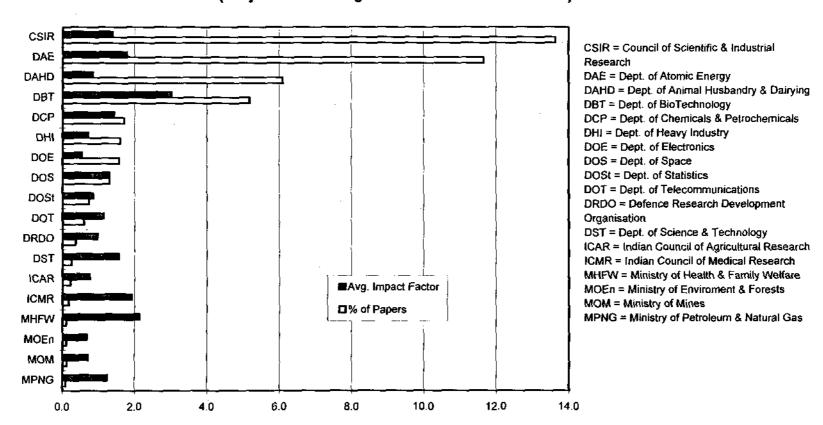

	1990	1994
Major Scientific Agencies,	3831	
Other Ministries & State Sector	252	837
Universities,	4007	4188
Others Academic Sector	1979	2408
Industrial Sector	277	369
Health Sector	596	602
Total	11124	13267

Table 1.4.1 Major sectors and their scientific publication output

The volume of output and average IF of the Major Scientific Agencies are shown in Table 1.4.2). The high growth in the Department of Biotechnology (output doubled from '90 to '94) indicates that it is a burgeoning new area of activity. A high growth in Department of Electronics must be discounted due to the basic numbers being small. CSIR has the highest output, but has declined in relative terms.

Table 1.4.2 : Output of the Major Scientific Agencies

<u>Agencies</u>	<u>1990</u>	<u>% of</u> output '90	<u>1994</u>	<u>% of output</u> <u>'94</u>	<u>Av IF '94</u>
DAE	918	8.25	1170	8.82	1.733
CSIR	1233	11.08	1451	10.94	1.325
DRDO	119	1.07	140	1.0 6	0.913
DOE	4 .	0.04	13	. 0.10	0.543
MOEn	20	0.18	30	0.23	0.562
ICAR	207	1.86	165	I.24	0.733
ICMR	149	1.34	170	1.28	1.649
DBT	23	0.21	59	0.44	2.929
DST	413	3.71	553	4.17	1.446
DOS	106	0.95	18 3	<i>I.3</i> 8	1.187
MHFW	460	4.14	493	3.72	2.034

Fig 1.4.1 Percentage Output of Publications & Average Impact Factor per Paper (Major Scientific Agencies: *SCI Data for India* 1994)

9

1.5 Scientific publications from Indian states

The SCI data showed that there were contributions from 26 states in 1990 and 28 states and Union Territories in 1994. As expected, there was a wide variation in the volume of output from different states and Union Territories, given their intrinsic differences in terms of size, institutions, financial outlay and scientific manpower. The concentration of scientific institutions around the metropolitan areas also accounts for the above differences and the present analysis must be refined to include this aspect. The output of the States and Union Territories are shown in Fig. 1.5.1.

The states with the highest volume of published work (with more than 1000 napers each) in 1990 were *Maharashtra*, *UP*, *West Bengal* and *Dethi*, accounting for over 50 nercent of India's output in the *SCI*. Since 1994 they have been joined by *Karnataka* and *Tamil Nadu*, the latter overtaking *Andhra Pradesh* to obtain the sixth rank in terms of overall production. These states account for almost 70 percent of India's output.

The highest growth in publications since 1990 has been in the southern and western states of *Karnataka*, *Tamil Nadu* and *Maharashtra*.

A decline has taken place in almost all the northern states, *Rajasthan, Uttar Pradesh, Chandigarh, Himachal Pradesh, Jammu and Kashmir* (Figure 1.5.1). Other states that have gained are *Madhya Pradesh, Gujarat* and *Andhra Pradesh*.

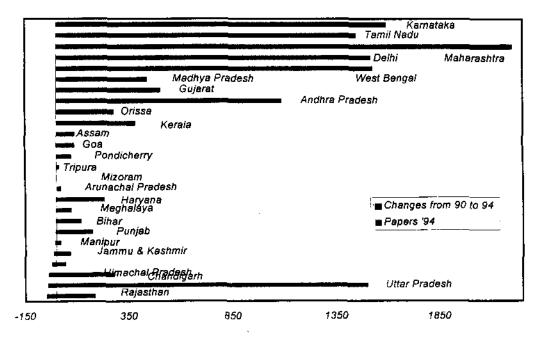
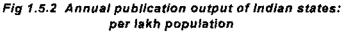



Fig 1.5.1: Output of Scientific Publications from Indian States : SCI 1994


1.5.1 Scientific output of states per unit Population

When scaled for size differences by the population in each state, sharp differences emerge (Figure 1.5.2). This shows the extent of science orientation in the region. Not unexpectedly, the Union Territories, Chandigarh, Delhi, Pondicherry and Goa and Andaman-Nicobar had a higher output per lakh population. In 1994, Chandigarh was leading with an output of 43 papers per lakh population, followed by Delhi with 14 papers and Pondicherry with 8 papers respectively.

Among the larger states, Karnataka was leading with close to 3 papers, Maharashtra with 2.3 papers, and Tamil Nadu and West Bengal with 2 papers each.

Among the smaller states, Meghalaya outstripped the larger states with 4 papers per lakh persons.

1.5.2 Changes in State output in Major Disciplines

Analysis of our data shows that while national output has increased in every discipline (with the sole exception of *Agriculture*), at the state level there has been growth in certain disciplines and decline in others. The changes are shown in Fig. 7.1, a-c, and, schematically in Table 1.5.¹

The maximum growth has taken place in *Physics* (342 papers), followed by *Biomedical Research* (308) and *Engineering* (234). This is mainly accounted for by growth in certain states, (i.e.), *Maharashtra* for *Physics*, *Delhi* for *Biomedical Research*, and *Karnataka* for *Engineering*.

The highest net increase has been in *Physics* from *Maharashtra* (109 papers); in *Chemistry* from *Tamil Nadu* (87)and *Maharashtra* (82); in *Physics* from *West Bengal* (70); in *Biomedical Research* in *Delhi* (63) and *Karnataka* (55); in *Clinical medicine* in *Tamil Nadu* (60); and in *Engineering and Materials Science* from *Karnataka* (49, 27) and *Tamil Nadu* (33, 16). Contributions to *Multi disciplinary* journals appears to have increased in *Karnataka, Maharashtra* and *UP. Computers*, a small field, appears to be growing in almost all the states, more significantly in *West Bengal* (18).

The major decline has been in *Clinical medicine* in *Chandigarh* (-52) and *Maharashtra* (-34), in *Chemistry* from *Andhra* (-45) and from *UP* (-32), in *Agriculture* from *Haryana* (-32) and *UP* (-32), in *Physics* from *UP* (-23), in *Biology* from *West Bengal* (-22) and *UP* (-21).

Strong contrasts are provided by *Tamil Nadu*, growing in all areas except *Agriculture*, and *Rajasthan and UP* declining in 7-8 out of 12 disciplines (Table 7.1c)

Individual state profiles have been created from an analysis of publications from the states featuring number of papers, average impact, activity and visibility indices in different disciplines, and extent of foreign and interstate collaboration (see Section 5.4)

In Table 1.5.1 we show the position of the states above and below the state averages for output and Impact Factor.

1990		Output						
		Above Average		Below Average				
Factor	Above Average	Maharashtra West Bengal Delhi Karnataka	1	Jammu & Kashmir Chandigarh	IV			
Impact	Below Average	Uttar Pradesh Tamil Nadu Andhra Pradesh	11	GUJ, KER, MAP, HAR, ORI, RAJ, PNJ, BIH, GOA, ASM, MEG, PON, MAN, TRI, ARN, MIZ, AND, SIK, HIM	111			

Table 1.5.1a Classification of States based on Output & IF 1990

Without going into the actual figures of the Productivity and Impact Factor it is seen that **Maharashtra**, **Delhi**, and **Karnataka** have maintained an above average productivity and Impact Factor from 1990 to 1994. **West Bengal** has however, lost out in 1994 as its Impact Factor has gone below the national average in 1994. **Andhra Pradesh** on the other hand has crossed over the average line for IF.

Among the states with smaller output(below National Average), **Chandigarh** has maintained its IF above the National Average in both 1990 & 1994. The IFs of **Pondicherry, Arunachal Pradesh** and **Orissa** have gone past the national avergage since 1990. **J&K's** IF fell below the national average between 1990 & 1994. I - both Output and Impact Factor above the National Average.

II - Ouput above the National Average but Impact Factor below the National Average

III - below the National Averages in both Output and Impact Factor.

IV- below the National Average in their Outputs but above National Average in Impact Factor

1994		Output						
		Above Av	erage	<u> </u>	Below Average			
Factor	Above Average	Maharashtra Delhi Kamataka Pradesh	Andhra	1	Pondicherry Chandigarh Orissa Arunachal Pradesh	ĪV		
Impact	Below Average	Uttar Pradesh Nadu Bengal	Tamil West	11	GUJ, KER, MAP, HAR, RAJ, PNJ, BIH, GOA, ASM. MEG. J&K. MAN. TRI, MIZ. HIM			

Table 1.5.1b Classification of States based on Output & IF 1994

1.6 Institutional Output and Impact

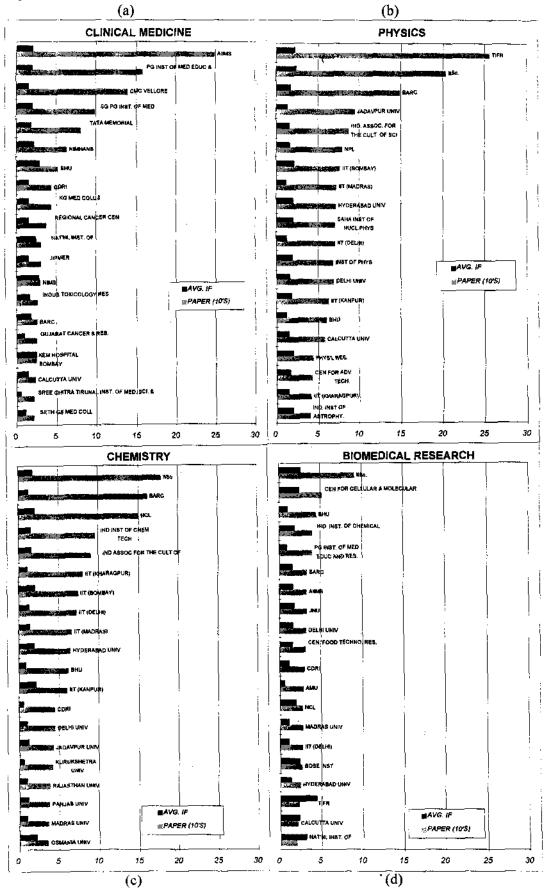
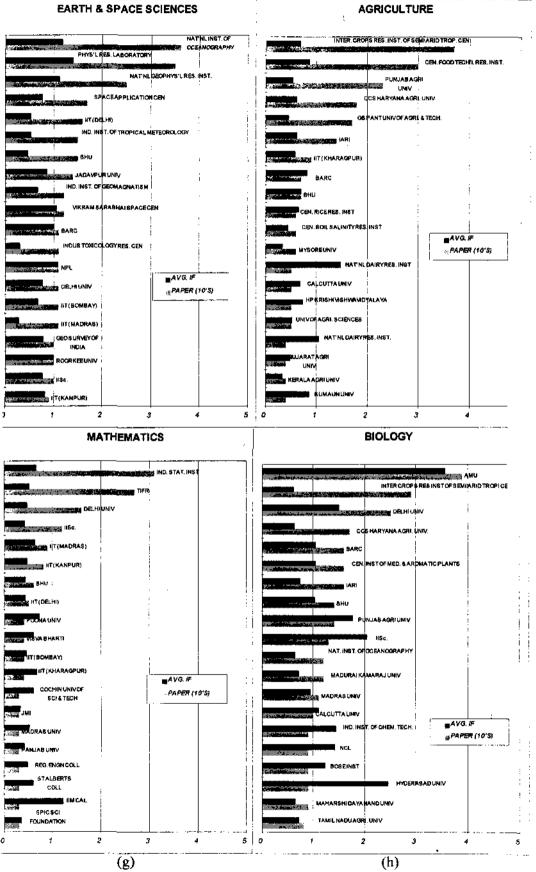
There were more than 17,000 addresses located in India in the SCI database for the years 1990 and 1994, of which 98.8 percent were institutional addresses and 0.2 percent were residential or private addresses. The institutional output was highly skewed, a few major institutions contributing a large percentage of the output. It may be said that the activities of these institutions constitute the core of Indian science.

As the unit of analysis gets smaller down to the institutional level, the question of data reliability and fluctuation becomes more acute. The interpretation of institutional productivity therefore needs to made with greater care. In this study no attempt has been made to adjust for differences in size between institutions.

In order to damp out the effect of year-to-year fluctuations, we have based our calculations on the aggregated data for the years 1990 and 1994. The difference between the output in the 2 years indicates change. Whether this is the effect of fluctuation or an actual trend due to specific causal factors can only be determined by analyzing several years of data.

In Chapter 8, Fig 8.1(a-1) we have shown the institutions ordered by output in different disciplines, and their growth or decline (in terms of change in output in the 4 year interval). Only those institutions which were among the top 40 productive institutions in either of the years have been selected for display. We have also indicated the cumulative percentage of output in any discipline accounted for by these institutions.

The proportion of papers in different disciplines varies sharply between institutions. This is to be expected as institutions often specialize in a few or even a single discipline. Since the average IF for disciplines varies considerably, it is not meaningful to make a direct comparison of institutions using their average IF. Instead, comparisons may be made on the basis of the IF of papers contributed by the institutions within a single discipline A quick overview of institutional output and impact in 1994 are shown in Figures 1.6.1 (a-1).

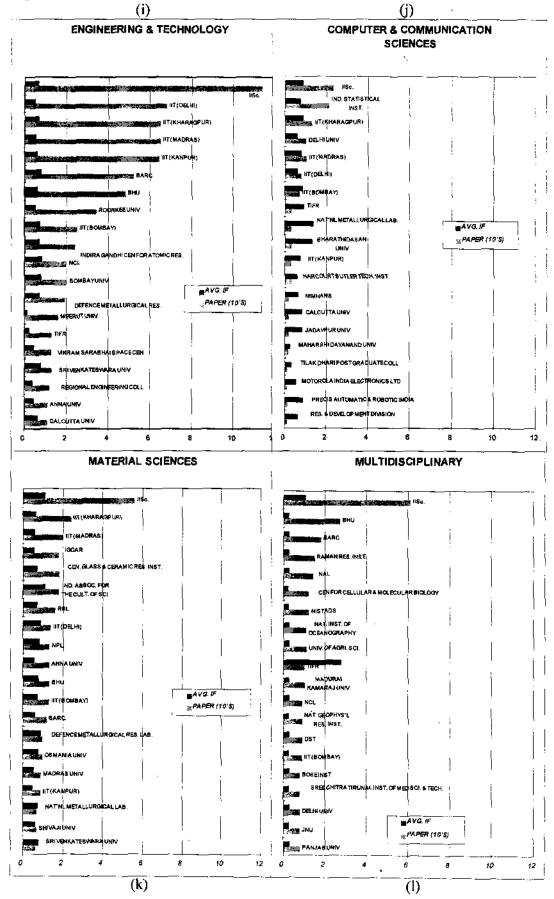

Fig 1.6.1 SCIENTIFIC PUBLICATION OUTPUT OF INDIAN INSTITUTIONS - 1994

Fig 1.6.1 SCIENTIFIC PUBLICATION OUTPUT OF INDIAN INSTITUTIONS - 1994 (f)

(e)

16

Fig 1.6.1 SCIENTIFIC PUBLICATION OUTPUT OF INDIAN INSTITUTIONS - 1994

17

1.7 Foreign Collaboration

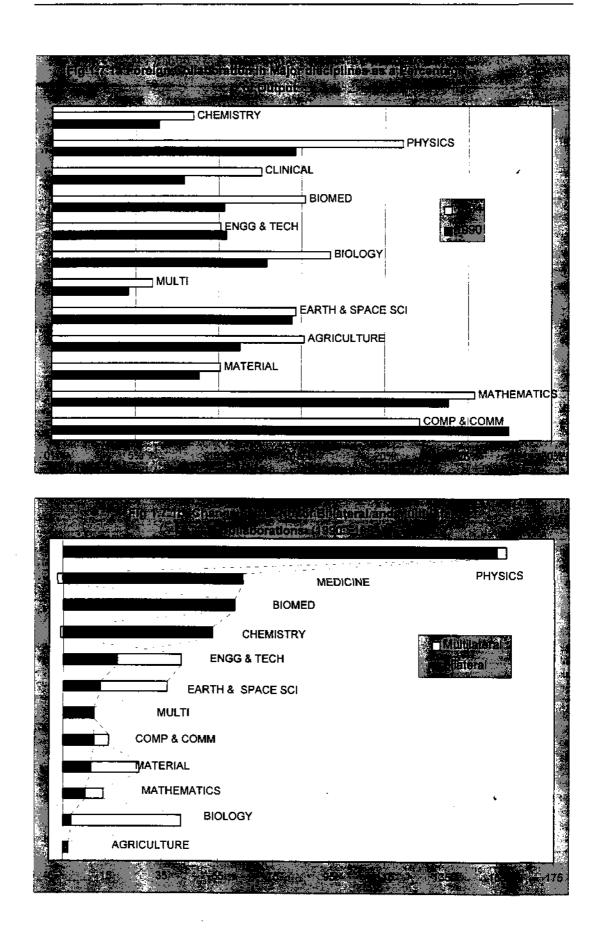

Foreign collaboration patterns have been obtained from an analysis of the co-authorship details in the individual records which give an indication of the degree of internationalization of Indian science. *The extent of collaboration, both bilateral and multilateral, has increased*. Relatively speaking, collaboration has increased in Physics, Biology, Medicine and Biomedical Research and declined in Computers, and Engineering. *The average IF of papers with foreign collaboration is 2.06 compared to national average of 1.33.* The list of countries and frequency of collaboration shows that even though the major partners are USA, UK, Germany, collaboration has been initiated with a number of Third World countries between 1990 and 1995. Details on foreign collaboration are shown in Fig. 1.7.1 and Tables1.7.1 and 1.7.2

Table 1.7.1 a :Foreign collaboration in Indian publications An Overview

		<u>1990</u>	<u>1994</u>	<u>%change</u>
1.	No. of internationally co-authored papers	641	1564	144%
2.	No. of bilateral collaborations	509	1311	155.6%
3.	No. of multilateral collaborations.	132	253	91.7%
4.	No. of partner countries	70	.93	32.86%

Disciplines	1990	% of total output	1994	% of total output	partner countries '94
Mathematics	50	29.8	54	28.6	USA
Physics	500	22.8	782	32.1	USA, GER, UK
Chemistry	165	7.0	228	9.2	USA,GER
Biology	78	13.8	130	23.4	USA,UK
Clinical Medicine	169	10.1	343	19.5	USA, UK, GER
Biomedical Sciences	97	11.0	220	19.1	USA, JAP, UK
Computer Sciences	17	33.3	27	23.9	USA
Engineering	83	11.8	98	10.7	USA, GER, CAN
Materials Science	35	10.3	47	10.9	USA, UK
Earth Sciences	72	18.6	100	19.8	USA, RUS, JAP
Agriculture	47	12.9	48	16.9	USA, AUS, UK
Multidisciplinary	21	5.0	40	7.3	USA, GER, JAP
Total	1334	13.2%	(219)	18.7	USA, GER, UK

Table 1.7.1 b : Foreign collaboration in major disciplines.

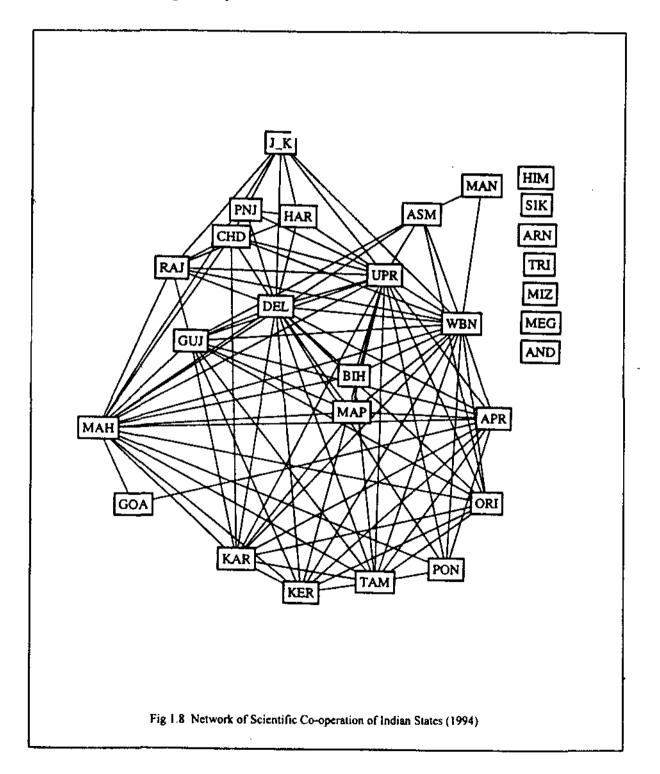

COUNTRY	1990	19 94	S.No	COUNTRY	1990	199
1 ARGENTINA	4	3	52	TAIWAN	2	10
2 AUSTRALIA	31	59	53	THAILAND	4	8
3 AUSTRIA	5	14	54	TURKEY	2	3
4 BAHRAIN	4	1	55	USA	441	61 <i>°</i>
5 BANGLADESI	H 7	15	56	VIETNAM	1	1
6 BELGIUM	11	18	57	WALES	9	7
7 BRAZIL	7	21	58	ZAMBIA	1	2
8 BRUNEI	1	5	59	AFGHANISTAN	1	
9 BULGARIA	7	7	60	ARABIA	1	
10 CANADA	74	122	61	BERMUDA	1	
11 CHILE	3	8	62	INDONESIA	1	
12 CZECHOSLO		1	63	KUWAIT	4	
13 DENMARK	7	9	64	PAPUA-N-GUINEA	2	
14 EGYPT	3	7	65	PORTUGAL	1	
15 ENGLAND	119	169	66	ZIMBABWE	4	
16 ETHIOPIA	2	3	67	YUGOSLAVIA	1	
17 GERMANIES	135*	204	68	USSR	25	
8 FRANCE	52	109	69	FINLAND	5	
	5	9			J	4
19 GREECE			70			1
0 HONG-KONG	3	2	71	ARMENIA		3
HUNGARY	14	15	72	BYELARUS		2
2 IRAN	3	2	73	COLOMBIA		6
3 IRAQ	1	2	74	CONGO		2
4 IRELAND	1	4	75	COSTA-RICA		1
5 ISRAEL	3	8	76	CYPRUS		4
6 ITALY	52	85	. 77	CZECH-REPUBLIC		4
27 JAPAN	73	125	78	FINLAND		14
8 JORDAN	3	1	79	GHANA		1
9 KENYA	1	6	80	JAMAICA		1
0 LIBYA	2	3	81	KAZAKHSTAN		3
1 MALAYSIA	1	7	82	LEBANÓN		1
2 MEXICO	5	6	83	LESOTHO		1
3 NEPAL	1	3	84	LUXEMBOURG		1
4 NETHERLAND		32	85	MAURITIUS		1
5 NIGERIA	11	10	86	MONACO		1
6 NORTH-IRELA		17	87	MOROCCO		2
7 NORWAY	4	7	88	NEW-ZEALAND		11
	1	3	89	REP-OF-GEORGIA		1
9 PAKISTAN 0 PEOPLES-R-0	3 HINA 19	4 22	90 91	RUSSIA SLOVAKIA		52 4
1 PHILIPPINES	5 SHINA	7	91	SLOVANA		4
2 POLAND	5	, 14	93	SOUTH-KOREA		12
3 ROMANIA	3	7	94	SRI-LANKA		3
4 SAUDI-ARABI		3	95	SUDAN		1
5 SCOTLAND	12	20	96	SURREY		2 1
6 SINGAPORE	3	5	97	TANZANIA		2
7 SOUTH-AFRIC		10	98	TUNISIA		3
8 SPAIN	21	27	99	U-ARAB-EMIRATES		7
9 SWEDEN	20	31	100	UKRAINE		1
0 SWITZERLAN		32	101	UZBEKISTAN		4
1 SYRIA	1	12	102	YEMEN		1

Table 1.7.2	Frequency of	f India's Foreign	Collaboration in	1990 & 1994

* - FRG - 126, GDR - 9

1.8 Interstate Collaboration

Interstate collaboration patterns show that more states have entered the collaborative network between 1990 and 1994. A collaborative network of states showing links greater than the average density of links is drawn below.

1.9 Structural Analysis

The structure of multivariate relationships between states and fields may be visualized from the infographic maps, which summarise the results of Correspondence Analysis on the output of 28 states in 12 disciplines. The details of the correspondence analysis are in Chapter 10. The overall structure of relationships between states and research fields has not changed very much in the interval between 1990 and 1994. While the hard core of the matrix has remained intact, non trivial changes in the case of the relatively smaller states have been observed.

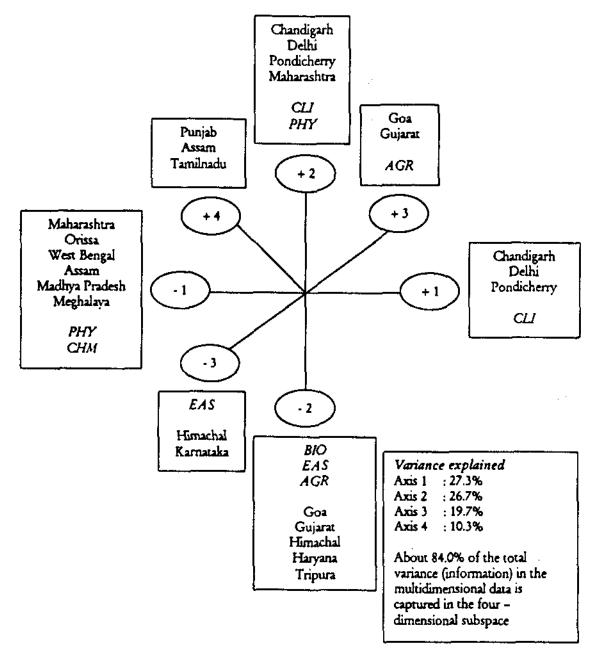


Fig 1.9 Summary of Correspondence Analysis (1994 data)

1.10 Conclusions

In this study, we have tried to indicate that it is possible to use bibliometric analysis to project a detailed picture of various aspects of national scientific activity including output, impact, change and foreign and domestic collaboration from the publication data alone.

The analysis at the level of institutions was beyond the scope of this study. However we included a few of the details which may be of interest to a wider scientific community.

More useful information can be generated if the indicators of scientific output are combined with existing indicators of inputs such as manpower or funds. This can form the basis of a system of evaluation that is non invasive, within the known limitations of bibliometric studies.

Like all other 'remotely sensed' information it needs to be confirmed by 'ground truth'; in other words, the opinion of subject experts need to be taken into account in the final interpretations.

A word needs to said about future work in this direction. A proper bibliometric analysis will require the analysis of citations as well as necessitate the building up of a database of publications for several years from which short and long term trends may be mapped.

7

.

.

2 Introduction

Information on inputs to the scientific establishment (i.e. financial, manpower employed etc.), as well as outputs (i.e. publications, patents, manpower trained, etc.) is an essential adjunct to discussions on science policy or decision making in science. While input statistics are regularly compiled and made available, output statistics have to be generated from dispersed data. Unless compiled on a routine basis (e.g. by the patent office, or UGC) these statistics are not readily available. Compilation of India's publication record is a painstaking exercise which has been partially undertaken in the form of the *Indian Science Abstracts* at INSDOC. As yet no comprehensive attempts have been made to map India's scientific output using this data. Moreover the ISA leaves out a significant proportion of Indian papers appearing in foreign journals.

The Science Citation Index, brought out annually by the Institute of Scientific Information, Inc., (USA) therefore remains the database of choice, providing world wide data on published scientific papers and access to author names, titles, sources, references cited and author addresses, from about 4000 journals in all fields of science. Designed originally as a research tool, it has of late been used by several countries to monitor internationally visible scientific output. *ISI* claims to select journals on the basis of their citation levels. Since 1987, the SCI has covered about 12 Indian journals, a decline from about 40 journals covered in 1979. At present (1994) India's publications in the SCI from the Indian journals is about 12 percent. The remaining Indian papers, are in international journals published outside India.

Without going into debates on whether the coverage of journals from India (and thereby a substantial part of India's scientific output) is adequate, we have proceeded with the exercise of examining Indian publications in the SCI for the years 1990 and 1994, with a view to map output and changes in the scientific disciplines at the national, sectoral and state levels. Unlike other analyses (e.g. ISSRU, Hungary) that attribute a paper only to the country of the first author, we have included all papers with at least one author from India.

A total of a little over 20,000 records with at least one corporate address from India was retrieved from the 1990 & 1994 editions of SCI and converted into a database. The data was cleaned to standardize names of corporate addresses. Impact Factors from the *Journal Citation Reports* (JCR), and country of publication from Ulrich directory, were introduced manually. The journals were then categorized into 11 major scientific disciplines and a 'multidisciplinary' category to incorporate journals that include papers in all disciplines (ie. Nature, Current Science). This scheme provides the basis for the classification of individual papers.

The structured database was then used to answer the following questions, i.e.

- which were the journals in which Indian scientists published
- what was the number of scientific publications in major disciplines and subdisciplines in 1990 & 1994?
- the average impact factor of publications in each discipline.
- sectoral output in each disciplinary category in both years.
- state level output in each of the 12 disciplinary categorise.
- changes between 1990 & 1994.

These issues are covered in Chapters 4-8

The SCI lists the addresses of all authors of a paper and thus provides a unique opportunity to study collaboration patterns. Using this, we have extracted (Chapter 9),

- foreign and interstate collaboration
- changes between 1990 and 1994

2.1 Multivariate Analysis :

There are two sources of noise in the data used. One is the random year to year fluctuation that cannot be detected in a simple 2-time period study. This may be overcome by aggregating data over a few years to smooth fluctuations. The other source of noise is introduced by the classification procedure. Inevitably, some articles will be wrongly classified due to the fact that journal interests span intersections between disciplines. Multivariate analyses of the data (Correspondence Analysis and Network Analysis) help reveal underlying patterns and similarities, suppressing the effects of noise. (Chapters 10 and 11).

2.2 Citation Analysis :

In the past, one of the main uses of the Science Citation Index has been the analysis of citations received by individual papers which gives an index of the utility of these papers in ongoing research. However, this entails an analysis of citation matched data from across the world. In this study, citation analysis has not been attempted as the level of computer hardware support, data access, time and manpower requirements exceed the outlay for the present exploratory exercise. It is hoped that such an analysis shall constitute the basis for a future study.

3 Methodology

The publications from the SCI database were selected as being Indian on the basis of the geographical location in India of any of the authors In the present study, data for the years 1990 and 1994 have been taken from the Science Citation Index for a detailed analysis. This contained a little over 20,000 individual publications with at least one address originating in India. The data were converted into a database using the software package FOXPRO.

3.1 Data Pre Processing

3.1.1 Enhancement

The SCI includes information on author names, title, journal, document type, author addresses, language and references. This has been enhanced by appending the 'impact factor' (IF) of the journal from the Journal Citation Report (JCR) of 1994, and the country of publication of the journal from Ulrich directory.

3.1.2 Data Cleaning and Standardization

The data had to be cleaned to remove multiple forms of the same institutional addresses and reduce addresses to a standard form. This was partially done by computerised recognition algorithms.

3.2 Document Type

ISI categorizes papers by type. Documents have been classified into 8 types as Article, Note, Review, Biographical Item, Letter, Editorial, Correction and Meeting Abstracts. All types of documents have been included in this study.

The number of articles, reviews, letters meeting abstracts, notes from India vary considerably, the bulk of the output being in the form of research articles and notes. Impact Factor is seen to vary according to the nature of the document. While the bulk of the papers lay within an impact factor range of 0-5, a small percentage of <u>articles</u> had impacts in the range 10-40. A higher percentage of letters appeared in journals with IF > 15-25. A few reviews appeared in journals with IF between 10-15. Meeting abstracts had a larger proportion of high IF documents, the highest value ranging to 60.

3.3 Classification into Subfields

The articles were classified into disciplinary categories using a procedure followed by Computer Horizons Inc. (CHI), and developed in Nagpaul (1997).

The journals have been classified into 12 classes, comprising 1 major disciplines, given below, and a separate multidisciplinary category.

Mathematics	Physics
Chemistry	Biology
Agriculture	Clinical Medicine
Biomedical Sciences	Computer Sciences
Engineering	Materials Science
Earth Sciences	Multidisciplinary

3.4 Journals used

The journals covered by SCI and used by Indian scientists have been ranked in terms of their usage and Impact factor. The Indian journals included in SCI do not appear to have high impact factors . A full list of journals is appended in Part II (Table 2).

3.5 Performance Indicators

The performance of agencies, regions, institutions are obtained in terms of total output of papers in 12 disciplines and the 'impact factor' of the journals carrying the publication. Comparisons are made with the national averages. Indicators used to enable comparisons e.g. of state activity and impact in different disciplines on the basis of the national activity and impact profiles, are defined below:

3.5.1 Impact factor

of a journal is defined as the ratio of

number of citations to a journal in a given year / number of publications in the previous two years.

3.5.2 Average Impact Factor

is defined as

Total Impact factor of all papers / Total number of papers

3.5.3 Activity Index

of a state is defined as

Fraction of papers in a given discipline by state/ Fraction of papers in the same discipline in the country.

3.5.4 Visibility Index

of X(state/institution/sector) in a given discipline Y is defined as

Fraction of cumulative impact of papers from the state in the discipline / Fraction of cumulative impact of total country papers in the same discipline

These indices enable comparison between both states and disciplines. However the values cease to be meaningful if some of the quantities being normalized are small [7]. This problem becomes more acute as the unit of analysis becomes smaller. The indices are therefore not computed below the state level.

3.6 Collaboration Patterns

Since the *SCI* gives addresses of all authors, it is possible to infer the extent of international as well as national collaboration. A study on Transnational collaboration in Indian science based on the SCI had been conducted by Nagpaul, (1997), where the extent of India's foreign collaboration was compared with that of other countries. In this study we have not made any international comparisons. In Chapter 9 we indicate the levels of foreign collaboration, both bilateral and multilateral, in all fields of science in the -years 1990 and 1994, and the major partner countries in collaboration.

3.7 Structural Analysis

The structure of output of the 28 states in 12 fields of science is difficult to visualise in terms of the raw data. Are certain states similar to others in terms of their research activities? These similarities can be revealed through Correspondence Analysis. The procedure is a data reduction technique by which data on links in a 28*11 dimensional space is reduced to approximately 3 dimensions which can be displayed as 2 dimensional graphs. The distance between the points (states as well as disciplines) indicates the relative position of each state with respect to a discipline.

3.8 Network Analysis

Techniques of network analysis have been used to determine the 'centrality' of the network of inter-state collaboration. This gives an estimate of whether the network is dominated by a few actors (states). The centrality of each of the actors also indicates the position of the actor in the network, i.e. its strength of interaction with respect to co-authorship links and extent of linkages in terms of number of partners with which it is involved. Actors whose links fall below the average density of links are shown as isolates. The data can also be reduced to a block model where the states are grouped into blocks reflecting their intrinsic similarities.

3.9 Citations

Citations have not been considered in this study. Since citations provide an important indication of the utility of a research work, we hope to include citation levels in a later study which would indicate references being cited by Indian authors.

3.10 Limitations of the Study

A study of this nature, inevitably suffers from several limitations. The data is subject to year to year fluctuations thereby making it impossible to state whether observed changes are a random effect or indicating an actual underlying trend. Other limitations are listed below.

3.10.1 Multiple Counts

Where more than one address appears in a paper, there is a possibility of multiple counts. For example a joint paper with authors from two separate institutions is included in the <u>output</u> of both institutions. Similarly joint papers with interstate collaboration result in multiple counting of papers when the output of states is aggregated. Wherever possible, one should try to estimate the effect of multiple counts in terms of the *Redundancy Factor*.

3.10.2 Redundancy Factor

The redundancy factor estimates the effect of multiple counts in terms of the excess over the actual number of papers, as a proportion of the number of papers.

3.10.3 Unidentified Addresses and Excluded Cases

About 70 address could not be identified with standard institutional names. In addition there were about 0.2 per cent- papers from private addresses. These have not been included except for computation of national averages. In certain instances institutions with very low annual output have been excluded.

.

Journals used by Indian Scientists

This chapter examines the journals or periodicals publishing papers from India.

4.1 Country of Publication and Impact Factor

SCI obtains an Impact Factor (IF) for each journal based on its citation rate. The IF of a journal is usually defined as the ratio of the citations received by a journal in a given year to articles published in the previous two years. While this does give an indication of visibility of the journals, it does not take into account differences in citation pattern between disciplines. Thus direct comparisons across disciplines cannot be made using the journal impact factors.

The list of journals in the SCI data on Indian publications in 1990 and 1994 are not identical. They have been combined to obtain an approximate number of journals for the years 1990 and 1994. The number of papers and journals, and average number of papers in periodicals from different countries are shown in Table 4.1. The country of publication has been obtained from the Ulrich directory of periodicals. Almost one quarter of all papers from India in the SCI appeared in American journals. As expected, Indian journals published, on an average, the highest number of Indian papers (>100 articles per journal). Aside from this, the highest average number appeared in international journals published from Hungary, Czechoslovakia, Romania and the Netherlands (Fig 4.1)

The rank of the journal by frequency of use was usually inversely correlated with the rank by Impact Factor. Some exceptions have been noted in different disciplines. The top journals in any field ranked both by frequency of use and by Impact factor are listed in Table 4.3. A full list of journals with Impact factors is given in Part II (Table 2).

PUB_COUNT

TABLE 4.1

USA UKD IND NLD GER SWZ JPN AUS DNK CSK IRL FRA CAN HUN ITA POL ROM SWE AUT ISR BEL PRC SUN NOR FIN FIN FRL	863 341 13 191 112 73 49 21 27 9 14 36 25 10 15 9 2 11 3 4	4244 1537 1382 1178 491 430 153 103 96 69 68 66 65 61 36 34 27 17 14	3429 1580 1413 1295 556 361 146 40 132 58 94 69 86 114 49 23 6 18	4.9 4.5 106.3 5.2 4.4 5.9 3.1 4.9 3.6 7.7 4.9 1.8 2.6 .6.1 2.4 3.8 13.5 1.5	4.0 4.6 108.7 6.8 5.0 4.9 3.0 1.9 4.9 7.6 6.7 1.9 3.4 11.4 3.3 2.6 3.0
IND NLD GER SWZ JPN AUS DNK CSK IRL FRA CAN HUN HTA POL ROM SWE AUT ISR BEL PRC SUN NOR FIN	13 191 112 73 49 21 27 9 14 36 25 10 15 9 2 11 3	1382 1178 491 430 153 103 96 69 58 66 65 65 61 36 34 27 17	1413 1295 556 361 146 40 132 58 94 69 86 114 49 23 6	106.3 6.2 4.4 5.9 3.1 4.9 3.6 7.7 4.9 1.8 2.6 .6.1 2.4 3.8 13.5	108.7 6.8 5.0 4.9 3.0 1.9 4.9 7.6 6.7 1.9 3.4 11.4 3.3 2.6 3.0
NLD GER SWZ JPN AUS DNK CSK IRL FRA CAN HUN HTA POL ROM SWE AUT ISR BEL PRC SUN NOR FIN		1178 491 430 153 103 96 69 58 65 65 65 61 36 34 27 17	1295 556 361 146 40 132 58 94 69 86 114 49 23 6	6.2 4.4 5.9 3.1 4.9 3.6 7.7 4.9 1.8 2.6 .6.1 2.4 3.8 13.5	6.8 5.0 4.9 3.0 1.9 7.6 6.7 1.9 3.4 11.4 3.3 2.6 3.0
GER SWZ JPN AUS DNK CSK IRL FRA CAN HUN HTA POL ROM SWE AUT ISR BEL PRC SUN NOR FIN	112 73 49 21 27 9 14 36 25 10 15 9 2 2 11 3	491 430 153 103 96 69 58 66 65 61 36 34 27 17	556 361 146 40 132 58 94 69 86 114 49 23 6	4.4 5.9 3.1 4.9 3.6 7.7 4.9 1.8 2.6 .6.1 2.4 3.8 13.5	5.0 4.9 3.0 1.9 7.6 6.7 1.9 3.4 11.4 3.3 2.6 3.0
SWZ JPN AUS DNK CSK IRL FRA CAN HUN HTA POL ROM SWE AUT ISR BEL PRC SUN NOR FIN	73 49 21 27 9 14 36 25 10 15 9 2 11 3	430 153 96 59 58 66 55 51 36 34 27 17	361 146 40 * 132 - 58 94 69 86 114 - 49 23 6	5.9 3.1 4.9 3.6 7.7 4.9 1.8 2.6 .6.1 2.4 3.8 13.5	4.9 3.0 1.9 7.6 6.7 1.9 3.4 11.4 3.3 2.6 3.0
JPN AUS DNK CSK IRL FRA CAN HUN HTA POL ROM SWE AUT ISR BEL PRC SUN NOR FIN	49 21 27 9 14 36 25 10 15 9 2 11 3	153 103 96 59 58 66 55 61 36 34 27 17	146 40 - 132 - 58 94 69 86 114 - 49 23 6	3.1 4.9 3.6 7.7 4.9 1.8 2.6 .6.1 2.4 3.8 13.5	3.0 1.9 4.9 7.6 6.7 1.9 3.4 11.4 3.3 2.6 3.0
AUS DNK CSK IRL FRA CAN HUN HTA POL ROM SWE AUT ISR BEL PRC SUN NOR FIN	21 27 9 14 36 25 10 15 9 2 11 3	103 96 59 58 66 55 61 36 34 27 17	40 * 132 - 58 94 69 86 114 - 49 23 6	4.9 3.6 7.7 4.9 1.8 2.6 .6.1 2.4 3.8 13.5	1.9 4.9 7.6 6.7 1.9 3.4 11.4 3.3 2.6 3.0
DNK CSK IRL FRA CAN HUN HTA POL ROM SWE AUT ISR BEL PRC SUN NOR FIN	27 9 14 36 25 10 15 * 9 2 11 3	96 69 58 66 55 61 36 34 27 17	132 - 58 94 69 86 114 - 49 23 6	3.6 7.7 4.9 1.8 2.6 .6.1 2.4 3.8 13.5	4.9 7.6 6.7 3.4 11.4 3.3 2.6 3.0
CSK IRL FRA CAN HUN HTA POL ROM SWE AUT ISR BEL PRC SUN NOR FIN	9 14 36 25 10 15 [*] 9 2 11 3	69 58 66 55 61 36 34 27 17	58 94 69 86 <u>114</u> 49 23 6	7.7 4.9 1.8 2.6 .6.1 2.4 3.8 13.5	7.6 6.7 1.9 3.4 11.4 3.3 2.6 3.0
CSK IRL FRA CAN HUN HTA POL ROM SWE AUT ISR BEL PRC SUN NOR FIN	14 36 25 10 15 ⁷ 9 2 11 3	58 66 65 81 36 34 27 17	94 69 86 <u>114 -</u> 49 23 6	4.9 1.8 2. 6 .6.1 2.4 3.8 13.5	6.7 1.9 3.4 11.4 3.3 2.6 3.0
IRL FRA CAN HUN ITA POL ROM SWE AUT ISR BEL PRC SUN NOR FIN	14 36 25 10 15 ⁷ 9 2 11 3	58 66 65 81 36 34 27 17	94 69 86 <u>114 -</u> 49 23 6	4.9 1.8 2. 6 .6.1 2.4 3.8 13.5	6.7 1.9 3.4 11.4 3.3 2.6 3.0
FRA CAN HUN HTA POL ROM SWE AUT ISR BEL PRC SUN NOR FIN	25 10 15 9 2 11 3	65 61 36 34 27 17	86 <u>114</u> 49 23 6	2.6 . <u>6.1</u> 2.4 3.8 13.5	3.4 11.4 3.3 2.6 3.0
CAN HUN HTA POL ROM SWE AUT ISR BEL PRC SUN NOR FIN	10 15 - 9 2 11 3	61 36 34 27 17	<u>114 -</u> 49 23 6	2.6 . <u>6.1</u> 2.4 3.8 13.5	11.4 3.3 2.6 3.0
HUN HTA POL ROM SWE AUT ISR BEL PRC SUN NOR FIN	15 7 9 2 11 3	36 34 27 17	49 23 6	2.4 3.8 13.5	11.4 3.3 2.6 3.0
ITA POL ROM SWE AUT ISR BEL PRC SUN NOR FIN	້ 9 2 11 3	36 34 27 17	23 6	2.4 3.8 13.5	3.3 2.6 3.0
POL ROM SWE AUT ISR BEL PRC SUN NOR FIN	2 11 3	27 17	6	3.8 13.5	2.6 3.0
ROM SWE AUT ISR BEL PRC SUN NOR FIN	2 11 3	27 17	6	13.5	3.0
SWE AUT ISR BEL PRC SUN NOR FIN	11 3	17-			
AUT ISR BEL PRC SUN NOR FIN	3			1.2	1.6
ISR BEL PRC SUN NOR FIN		14	15	4.7	5.0
BEL PRC SUN NOR FIN		9	8	2.3	2.0
PRC SUN NOR FIN	4	6	9	1.5	2.3
SUN NOR FIN	3	4	2	1.3	0.7
NOR FIN	4	3	1	0.8	0.3
FIN	1	2	1	2.0	1.0
	1	- 1	2	1.0	2.0
	1	1	0	1.0	0.0
MEX	1	1	0	1.0	0.0
PAK	1	1	0	1.0	0.0
KWT	1	0	1	0.0	1.0
NZL	2	0	5	0,0	2.5
SGP	1	0	1	0.0	1.0
UKA	1	0	1	0.0	1.0
OTHERS	297	1215	578	4.1	1.9

4.2 Indian Journals

Since 1987, the number of Indian journals covered by the SCI has been about twelve, - a steep fall from forty journals before 1980. About 1382 papers in 1994 were published in Indian journals declining slightly from a figure of 1413 in 1990. This gives an average figure of more than 100 papers per year in Indian journals. As expected this is an order of magnitude higher than the average number of Indian publications in journals of any other country.

The list of Indian journals covered by SCI is shown in Table 4.2. The Impact Factor of all of them lie below 1. There are two Multidisciplinary journals and two each in Physics, Clinical Medicine and Biomedical Research. In Chemistry there as 3 journals and one in Earth & Space Sciences. In the remaining areas (Engineering, Computers, Mathematics, Biology and Agriculture) there are no Indian journals covered by SCI. The journal with the highest IF is the journal of Astronomy & Astrophysics, with an IF of 0.71. Only two Indian journals are not among the highly used journals within their discipline namely Astronomy & Astrophysics and Journal of Genetics (rank by use > 10).

4.3 International Journals

The largest number of journals used by Indian authors are published in the USA, UK, Netherlands and Germany. Between 1990 and 1994, the papers increased significantly in journals published in USA, and less so in Switzerland and Australia. In journals from Netherlands, Germany, Hungary, UK, Indian publications have declined. The country of publication of about 300 journals could not be identified (Fig.4.1).

Journals which fall within the top ten both in rankings by IF and use are Abstracts of the American Chemical Society (IF=8.0), FASEB Journal (IF=15.1) Journal of Agriculture and Food Chemistry (IF = 1.3). Theriogenology (IF = 1.97), Lancet (IF = 17.3) Journal of Biological Chemistry (IF = 7.7), Journal of Chemical Information and Computer Science (IF = 1.8), Computers and Chemistry (IF=1.4), Journal of Materials Research (IF = 2), International Journal for Numerical Methods in Engineering (IF = 1) and six multidisciplinary journals with IF ranging from 25.5 for Nature and 22.1 for Science to 0.5 for Science Progress.

Table 4.2 : List of Indian Journals Occurring in the SCI Data for 1990 & 1994

FIELD & JOURNAL TITLE	IF	1990	1994	TOTAI	L RANK/IF	RANK/USE
<u>PHYSICS</u>						
JOURNAL OF ASTROPHYSICS AND ASTRONOMY	0.706	23	19	42	151	32
PRAMANA-JOURNAL OF PHYSICS	0.345	109	117	226	192	1
<u>CHEMISTRY</u>						
PRÔCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-CHEMICAL SCIENCES	0.000	83	70	153	187	5
INDIAN JRL OF CHEM SEC A-INORGANIC BIO-INORGANIC PHYS THEORETICAL & ANALYTICAL CHEM	0.355	309	177	486	172	2
INDIAN JOURNAL OF CHEMISTRY SECTION B-ORGANIC CHEMISTRY INCLUDING MEDICINAL CHEM	0.293	268	299	567	175	1
EARTH & SPACE SCIENCES						
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-EARTH AND PLANETARY SCIENCES	0.000	35	24	59	115	3
<u>CLINICAL MEDICINE</u>						
INDIAN JOURNAL OF MEDICAL RESEARCH	0.296	96	97	193	539	ŀ
INDIAN JRL OF MEDICAL RES SECTION B-BIOMEDICAL RES OTHER THAN INFECTIOUS DISEASES	0.175	73	9	82	557	3
BIO-MEDICAL RESEARCH						
JOURNAL OF BIOSCIENCES	0.432	34	41	75	249	l.
JOURNAL OF GENETICS	0.389	8	9	17	255	27
MULTI-DISCIPLINARY						
CURRENT SCIENCE	0.271	334	461	795	13	1
JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH	0.237	41	59	100	14	2

Total number of Indian Journals occurring in the SCI Data is twelve. No Indian Journal features in the fields of Mathematics, Biology, Agriculture, Engineering & Technology, Computers & Communication Sciences and Material Sciences.

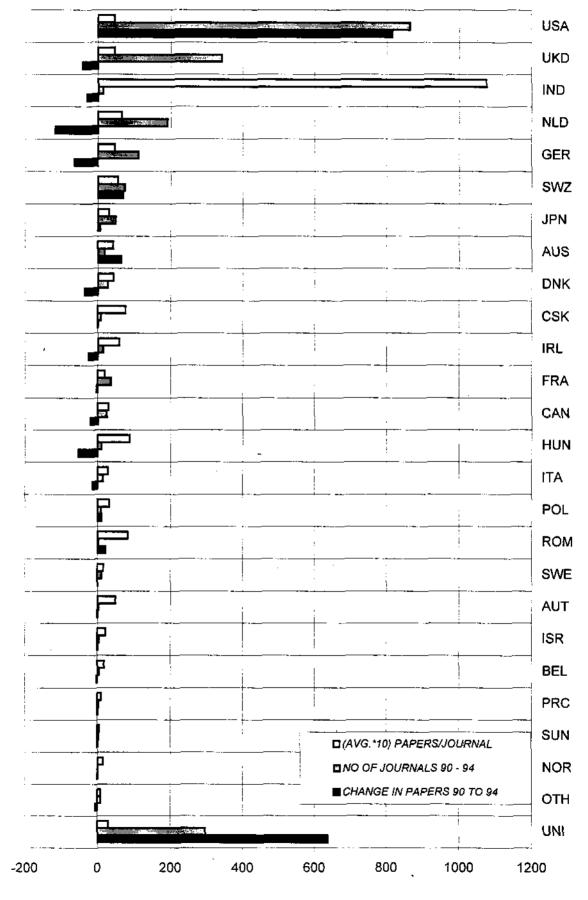


FIG 4.1 INDIAN PUBLICATION IN INTERNATIONAL JOURNALS (BY COUNTRY OF PUBLICATION)

Table 4.3: Journals carrying Indian Papers ranked by IF and use

Jtable1

MATHEMATICS	· · · · ·	n National Control of States National Control of States					
JOURNAL TITLE	IF	COUNTRY	1990	1994	TOTAL	RANK/IF	RANK/USE
IF Rankings							
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL	2.538	UKD	0	2	2	1	35
NONLINEARITY	1.474	UKD	2	0	2	2	35
ANNALS OF MATHEMATICS	1.449	USA	1	1	2	3	35
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION	1.244	USA	0	1	1	4	59
SIAM REVIEW	1.216	USA	1	0	1	5	59
AMERICAN STATISTICIAN	1.160	USA	0	1	1	6	59
SIAM JOURNAL ON NUMERICAL ANALYSIS	1.021	USA	2	1	3	7	25
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING	1.002	UKO 🔬	5	5	·i 10	8	
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS	1.000	USA	2	1	3	9	25
INVERSE PROBLEMS	0.980	UKD	0	1	1	10	59

Contribution Rankings

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS	0.339	USA	19	29	48	63	1
FUZZY SETS AND SYSTEMS	0.610	NLD	13	34	47	32	2
LINEAR ALGEBRA AND ITS APPLICATIONS	0.430	USA	10	12	22	51	3
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING	1.002	<u>UKD</u>	5	5	10	8	4
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATH	0.450	AUS	3	7	10	49	4
JOURNAL OF ALGEBRA	0.468	USA	4	4	8	47	6
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS	0.316	USA	5	3	8	66	6
APPLIED MATHEMATICS AND COMPUTATION	0.241	USA	6	2	8	77	6
BIOMETRIKA	0.832	UKD	4	3	7	15	9
JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY	0.546	ÜKD	3	4	7	39	9
COMMUNICATIONS IN ALGEBRA	0.288	USA	3	4	7	70	9
OPERATIONS RESEARCH LETTERS	0.235	NLD	З	4	7	79	9
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATH & PHYS SCI	0.000	UKD	3	4	7	84	9

JOURNAL TITLE	IF	COUNTRY	1990	1994	TOTAL	RANK/IF	RANK/USE
IF Rankings							
REVIEWS OF MODERN PHYSICS	14.426	USA	1	1	2	1	168
REPORTS ON PROGRESS IN PHYSICS	6.727	UKD	1	0	1	2	182
PHYSICAL REVIEW LETTERS	6.626	USA	19	37	56	3	21
PHYSICS REPORTS REVIEW SECTION OF PHYSICS LETTERS	6.541	NLD	3	2	5	4	130
PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY	5.750	USA	1	0	1	5	182
MASS SPECTROMETRY REVIEWS	4.160	USA	1	0	1	6	182
NUCLEAR PHYSICS B	3.722	NLD	13	14	27	7	46
OURNAL DE CHIMIE PHYSIQUE ET DE PHYSICO-CHIMIE BIOLOGIQUE	3.635	FRA	2	0	2	8	168
IOURNAL OF CHEMICAL PHYSICS	3.635	USA	15	35	50	8	26
ASTROPHYSICAL JOURNAL*	3.544	USA	3	2	5	10	130

Contribution Rankings

PRAMANA-JOURNAL OF PHYSICS	0.345	IND	109	117	226	192	1
PHYSICAL REVIEW B-CONDENSED MATTER	3.187	USA	76	130	206	15	2
PHYSICAL REVIEW A	2.292	USA	72	66	138	35	3
JOURNAL OF APPLIED PHYSICS	1.658	USA	63	68	131	65	4
SOLID STATE COMMUNICATIONS	1.446	USA	70	60	130	84	5
ASTROPHYSICS AND SPACE SCIENCE	0.310	NLD	84	24	108	201	6
PHYSICAL REVIEW D	3.233	USA	38	70	108	13	7
PHYSICA C	3.258	NLD	50	54	104	12	8
JOURNAL OF PHYSICS-CONDENSED MATTER	1.562	UKD	49	51	100	71	9
PHYSICA STATUS SOLIDI B-BASIC RESEARCH	0.733	GER	48	46	94	149	10
PHYSICS LETTERS A	1.228	NLD	45	49	94	104	10

CHEMISTRY

JOURNAL TITLE	<u> </u>	IF	COUNTRY	1990	1994	TOTAL	RANK/IF	RANK/USE

IF Rankings

CHEMICAL REVIEWS	14.240	USA	3	3	6	1	116
INORGANIC SYNTHESES	11.600	USA	1	0	1	2	166
ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY	8.000	ÜSA	- 44	46	90	3	10
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH	6.327	GER	0	4	4	4	132
APPLIED CATALYSIS B-ENVIRONMENTAL	6.319		0	1	1	5	166
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY	5.039	USA	9	10	19	6	59
CHEMICAL SOCIETY REVIEWS	4.913	UKD	0	1	1	7	166
NATURAL PRODUCT REPORTS	4.906	UKD	0	1	1	8	166
ANALYTICAL CHEMISTRY	4.609	USA	0	3	3	9	143
TOPICS IN CURRENT CHEMISTRY	4.000	USA	0	1	1	10	166

Contribution Rankings

INDIAN JOURNAL OF CHEMISTRY SECTION B-ORGANIC CHEMISTRY INCLUDING MEDICINAL CHEM	0.293	IND	268	299	567	175	1
INDIAN JRL OF CHEM SEC A-INORGANIC BIO-INORGANIC PHYS THEORETICAL & ANALYTICAL CHEM	0.355	IND	309	177	486	172	2
JOURNAL OF APPLIED POLYMER SCIENCE	0.870	USA	86	101	187	108	3
TETRAHEDRON LETTERS	2.378	USA	70	90	160	24	4
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-CHEMICAL SCIENCES	0.000	IND	83	70	153	187	5
SYNTHESIS AND REACTIVITY IN INORGANIC AND METAL-ORGANIC CHEMISTRY	0.442	USA	61	69	130	157	6
SYNTHETIC COMMUNICATIONS	0.699	USA	76	41	117	129	7
TETRAHEDRON	2.277	USA	39	62	101	27	8
POLYHEDRON	1.081	USA	37	57	94	88	9
ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY	8.000	USA	44	46	90	3	. 10

BIOLOGY

JOURNAL TITLE	IF	COUNTRY	1990	1994	TOTAL	RANK/IF	RANK/USE

IF Rankings

FASEB JOURNAL	.15 115	USA	0	22	22		9
BIOESSAYS	6.017	UKD	0	1	1	2	126
PROTEIN SCIENCE	4.856		0	2	2	3	93
ECOLOGICAL MONOGRAPHS	4.838	USA	0	1	1	4	126
CRITICAL REVIEWS IN PLANT SCIENCES	4.146		2	0	2	5	93
ANNUAL REVIEW OF PHYTOPATHOLOGY	4.106	USA	1	0	1	6	126
TRENDS IN ECOLOGY & EVOLUTION	4.106		0	1	1	6	126
BOTANICAL REVIEW	3.946	USA	0	2	2	8	93
ADVANCES IN MARINE BIOLOGY	3.714	USA	0	1	1	9	126
PLANT PHYSIOLOGY	3.542	USA	3	6	9	10	27

Contribution Rankings

PHYTOCHEMISTRY	1.157	USA	71	68	139	44	1
ANNALS OF APPLIED BIOLOGY	0.405	UKD	18	37	55	127	2
EUPHYTICA	0.579	NLD	25	24	49	103	3
PHOTOSYNTHETICA	0.457	CSK	20	16	36	117	4
PLANT CELL REPORTS	1.590	USA	12	22	34	30	5
PLANT SCIENCE	1.257	IRL	17	11	28	39	6
JOURNAL OF NATURAL PRODUCTS-LLOYDIA	1.498	USA	13	10	23	32	7
MYCOPATHOLOGIA	1.050	NLD	11	12	23	51	7
FASEB COURNAL	15.115	USA	0	22	22		<u>9</u>
ANNALS OF BOTANY	1.066	UKD	18	2	20	50	10
MYCOLOGICAL RESEARCH	0.975		11	9	20	57	10
PLANT CELL TISSUE AND ORGAN CULTURE	0.745	NLD	9	11	20	84	10

*

v

٠

EARTH AND SPACE SCIENCES

JOURNAL TITLE IF COUNTRY 1990 1994 TOTAL RANK/IF RANK/USE									
	JOURNAL TITLE		-11	COUNTRY	1990	1994	TOTAL	RANK/IF	RANK/USE

IF Rankings

METEORITICS	4.067	USA	5	7	12	1	18
EARTH AND PLANETARY SCIENCE LETTERS	2.951	NLD	2	6	8	2	29
ENVIRONMENTAL AND MOLECULAR MUTAGENESIS	2.847	USA	1	1	2	3	81
GEOCHIMICA ET COSMOCHIMICA ACTA	2.831	USA	3	2	5	4	46
EARTH-SCIENCE REVIEWS	2.667	NLD	0	1	1	5	99
CONTRIBUTIONS TO MINERALOGY AND PETROLOGY	2.319	USA	1	2	3	6	68
IMNOLOGY AND OCEANOGRAPHY	2.151	USA	1	Ö	1	7	99
GEOPHYSICAL RESEARCH LETTERS	2.145	USA	4	9	13	8	17
GEOLOGY	2.053	USA	1	3	4	9	53
MARINE MICROPALEONTOLOGY	1.908	NLD	1	0	1	10	99

Contribution Rankings

BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY	0.000	USA	47	39	86	115	1
INTERNATIONAL JOURNAL OF REMOTE SENSING	0.882	UKD	14	53	67	66	2
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-EARTH AND PLANETARY SCIENCES	0.000	IND	35	24	59	115	3
IOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-ENVIRONMENTAL SCI & ENG	0.467	USA	11	13	24	91	4
JOURNAL OF ATMOSPHERIC AND TERRESTRIAL PHYSICS	0.892	USA	7	16	23	65	5
MARINE GEOLOGY	1.061	NLD	10	11	21	57	6
ENVIRONMENTAL CONSERVATION	0.371	SWZ	4	17	21	103	6
ENVIRONMENTAL POLLUTION	1.159	UKD	10	10	20	48	8
ATMOSPHERIC ENVIRONMENT PART A-GENERAL TOPICS	1.310		16	0	16	36	9
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY	1.290	USA	11	5	16	38	9
NATER AIR AND SOIL POLLUTION	0.841	NLD	12	4	16	70	9

AGRICULTURE

JOURNAL TITLE	IF	COUNTRY	1990	1994	TOTAL	RANK/IF	RANK/USE
				·			<u> </u>

IF Rankings

THERIOGENOLOGY		1.967	USA	11	6	17	1.	10
PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY		1.851	USA	4	2	6	2	32
JOURNAL OF DAIRY SCIENCE	_	1.394	USA	1	0	1	3	74
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY	5.3 (Mg. 1	1.342	USA	15	15	30	4	4
INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY		1.321	NLD	2	2	4	5	37
ADVANCES IN AGRONOMY		1.308	USA	1	1	2	6	57
JOURNAL OF FOOD PROTECTION		1.292	USA	1	0	1	7	74
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL		1.231	UŜA	2	1	3	8	47
JOURNAL OF CEREAL SCIENCE		1.221	UKD	2	2	4	9	37
FOOD MICROBIOLOGY		1.193	UKD	0	2	2	10	57

Contribution Rankings

TROPICAL AGRICULTURE	0.098	UKD	19	20	39	90	1
JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE	0.866	UKD	20	12	32	24	2
PLANT AND SOIL	0.714	NLD	23	9	32	40	2
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY	1.342	USA	15	15	30		4
CROP SCIENCE	0.648	USA	13	17	30	46	4
FOOD CHEMISTRY	0.683	UKD	17	11	28	42	6
JOURNAL OF AGRICULTURAL SCIENCE	0.621	UKD	16	11	27	48	6
BIOLOGY AND FERTILITY OF SOILS	0.908	USA	11	13	24	20	8
JOURNAL OF AGRONOMY AND CROP SCIENCE-ZEITSCHRIFT FUR ACKER UND PFLANZENBAU	0.192	GER	13	9	22	87	9
THERIOGENOLOGY	1.967	UŞA		<u>8</u> . 6	17	1	10

CLINICAL MEDICINE

JOURNAL TITLE	IF	COUNTRY	1990	1994	TOTAL	RANK/IF	RANK/USE
IF Rankings							
CUNICAL RESEARCH	57.778	USA	2	2	4	1	191
NEW ENGLAND JOURNAL OF MEDICINE	22.673	UKD	6	3	9	2	75
IMMUNOLOGY TODAY	22.047	NLD	1	0	1	3	398
NEURON	18.348		0	2	2	4	311
LANCET	17.332	UKD	31	35	66	5	atája. 4
IOURNAL OF EXPERIMENTAL MEDICINE	13.862	USA	1	0	1	6	398
ARCHIVES OF GENERAL PSYCHIATRY	11.416	USA	0	1	1	7	398
ANNALS OF INTERNAL MEDICINE	9.887	USA	3	0	3	8	229
IOURNAL OF THE NATIONAL CANCER INSTITUTE	9.455		1	1	2	9	311
CIRCULATION	8.634	USA	1	1	2	10	311

Contribution Rankings

INDIAN JOURNAL OF MEDICAL RESEARCH	0.296	IND	96	97	193	539	1
JOURNAL OF NEUROCHEMISTRY	4.525	USA	1	93	94	36	2
INDIAN JRL OF MEDICAL RES SECTION B-BIOMEDICAL RES OTHER THAN INFECTIOUS DISEASES	0.175	IND	73	9	82	557	3_
LANCET	17,332	UKD	31 🔬	35	66 📩	5	4
EUROPEAN JOURNAL OF PHARMACOLOGY	2.677	NLD	62	2	64	88	5
NTERNATIONAL JOURNAL OF CARDIOLOGY	0.454	NLD	25	32	57	488	6
IOURNAL OF ETHNOPHARMACOLOGY	0.500	IRL	33	16	49	471	7
NTERNATIONAL JOURNAL OF LEPROSY	0.980	USA	25	22	47	332	8
DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY	0.482	USA	14	32	46	481	9
NTERNATIONAL JOURNAL OF DERMATOLOGY	0.578	USA	27	13	40	445	10

BIOMEDICAL RESEARCH

JOURNAL TITLE IF COUNTRY 1990 1994 TOTAL RANK/IF RANK/USE		 						
	JOURNAL TITLE		COUNTRY	1990	1994	TOTAL	RANK/IF	RANK/USE

IF Rankings

CELL	39.191	USA	0	1	1	1	219
MOLECULAR AND CELLULAR BIOLOGY	10.195	USA	2	0	2	2	175
DEVELOPMENT	8.064		0	1	1	3	219
JOURNAL OF BIOLOGICAL CHEMISTRY	7.716	USA	8		.30	4	9
JOURNAL OF VIROLOGY	6.254	USA	2	4	6	5	88
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY	6.115	USA	0	1	1	6	219
JOURNAL OF MOLECULAR BIOLOGY	6.018	UKD	2	11	13	7	38
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES	5.481	USA	1	0	1	8	219
INTERNATIONAL REVIEW OF CYTOLOGY	5.264	USA	1	0	1	9	219
BIOCHEMISTRY	5.234	USA	5	9	14	10	35

Contribution Rankings

JOURNAL OF BIOSCIENCES	0.432	IND	34	41	75	249	1
BIOCHEMISTRY INTERNATIONAL	0.828	NLD	73	0	73	187	2
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS	3.400	USA	27	28	55	30	3
MEDICAL SCIENCE RESEARCH	0.000		0	52	52	277	4
BIOCHEMISTRY AND MOLECULAR BIOLOGY INTERNATIONAL	0.566	AUS	0	49	49	226	5
MOLECULAR AND CELLULAR BIOCHEMISTRY	1.250	NLD	11	30	41	138	6
FEMS MICROBIOLOGY LETTERS	1.597	NLD	17	21	38	106	7
MUTATION RESEARCH	1.975	NLD	20	17	37	77	8
JOURNAL OF BIOLOGICAL CHEMISTRY	7.716	USA		22	30	4	<u> </u>
ENZYME AND MICROBIAL TECHNOLOGY	1.784	USA	11	14	25	87	10
CURRENT MICROBIOLOGY	0.983	USA	13	12	25	168	10
BIOTECHNOLOGY LETTERS	0.976	UKD	10	15	25	170	10
BIORESOURCE TECHNOLOGY	0.785		0	25	25	195	10
BIOLOGICAL WASTES	0.000	UKD	25	0	25	277	10

.

ENGINEERING AND TECHNOLOGY

JOURNAL TITLE	IF	COUNTRY	1990	1994	TOTAL	RANK/IF	RANK/USE
			<u>.</u>				· · · · · · · · · · · · · · · · · · ·

IF Rankings

JOURNAL OF RHEOLOGY	2.315	USA	0	1	1	1	156
ACTA METALLURGICA ET MATERIALIA	2.030		9	9	18	2	25
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS	2.012	USA	0	1	1	3	156
IEEE TRANSACTIONS ON INFORMATION THEORY	1.971	USA	1	0	1	4	156
PROGRESS IN ENERGY AND COMBUSTION SCIENCE	1.833	USA	1	0	1	5	156
IEEE TRANSACTIONS ON ELECTRON DEVICES	1.630	USA	8	10	18	6	25
OXIDATION OF METALS	1.550	USA	1	3	4	7	89
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE	1.460	USA	12	2	14	8	37
AICHE JOURNAL-AMERICAN INSTITUTE OF CHEMICAL ENGINEERS	1.359	USA	6	0	6	9	72
AICHE JOURNAL	1.359	USA	0	3	3	9	106

Contribution Rankings

MICROELECTRONICS AND RELIABILITY	0.152	USA	31	67	98	161	1
SCRIPTA METALLURGICA ET MATERIALIA	0.912		24	31	55	29	2
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH	1.056	USA	15	29	44	19	3
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE	0.633	USA	19	24	43	60	4
JOURNAL OF CHEMICAL AND ENGINEERING DATA	0.930	USA	18	22	40	28	5
JOURNAL OF POWER SOURCES	0.689	SWZ	15	21	36	53	6
CHEMICAL ENGINEERING SCIENCE	0.902	USA	13	19	32	31	7
WEAR	0.580	SWZ	14	18	32	68	7
ELECTRONICS LETTERS	1.159	UKD	18	12	30	16	9
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY	0.581	UKD	13	16	29	67	10

COMPUTERS

JOURNAL TITLE IF COUNTRY 1990 1994 TOTAL RANK/IF RANK/USE								
	JOURNAL TITLE	IF	COUNTRY	1990	1994	TOTAL	RANK/IF	RANK/USE

IF Rankings

-

JOURNAL OF COMPUTATIONAL CHEMISTRY	3.769	USA	1	0	1	1	28
JOURNAL OF MOLECULAR GRAPHICS	2.742	USA	0	1	1	2	28
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE	2.006	USA	0	3	3	3	14
IEEE TRANSACTIONS ON NEURAL NETWORKS	1.941	USA	0	3	3	4	14
NEURAL NETWORKS	1.939	USA	0	1	1	5	28
ARTIFICIAL INTELLIGENCE	1.915	USA	0	2	2	6	19
JOURNAL OF CHEMICAL INFORMATION AND COMPLITER SCIENCES	1.803	USA	1	25	6	7	Z
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS	1.752	NLD	0	1	1	8	28
COMPUTERS & CHEMISTRY	1.380	USA	2	4	6	9	7
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING	1.117	USA	1	0	1	10	28

Contribution Rankings

COMPUTERS & MATHEMATICS WITH APPLICATIONS	0.304	USA	6	11	17	37	1
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS	0.649	USA	4	12	16	22	2
IEEE TRANSACTIONS ON COMPUTERS	0.904	USA	7	7	14	15	3
PATTERN RECOGNITION	0.691	USA	8	6	14	20	3
INFORMATION SCIENCES	0.266	USA	2	10	12	38	5
INTERNATIONAL JOURNAL OF BIO-MEDICAL COMPUTING	0.576	IRL	1	9	10	26	6
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES	1,803	USA	1	5	6	7	7
COMPUTERS & CHEMISTRY	1:380	USA	2	4	6 🔿	9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING	1.018	SWZ	1	3	4	13	9
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS	0.905	USA	0	4	4	14	9

MATERIAL SCIENCE

JOURNAL TITLE	IF	COUNTRY	1990	1994	TOTAL	RANK/IF	RANK/USE

IF Rankings

PROGRESS IN MATERIALS SCIENCE	3.385	USA	0	1	1	1	38
CHEMISTRY OF MATERIALS	2.679		1	5	6	2	19
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH	2.104	USA	3	0	3	3	27
DIAMOND AND RELATED MATERIALS	2.017		0	1	1	4	38
JOURNAL OF MATERIALS RESEARCH	2.000	USA		20	23	5	9
BIOMATERIALS	1.576	UKD	4	3	7	6	18
JOURNAL OF MATERIALS CHEMISTRY	1.524		0	8	8	7	16
JOURNAL OF THE AMERICAN CERAMIC SOCIETY	1.459	USA	8	8	16	8	11
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION	1.418		0	2	2	9	33
JOURNAL OF ELECTRONIC MATERIALS	1.238	USA	1	3	4	10	25

Contribution Rankings

JOURNAL OF MATERIALS SCIENCE LETTERS	0.444		87	87	174	31	1
JOURNAL OF MATERIALS SCIENCE	0.741	UKD	68	55	123	26	2
MATERIALS LETTERS	0.660	NLD	22	24	46	28	3
JOURNAL OF NON-CRYSTALLINE SOLIDS	1.072	NLD	26	15	41	11	4
MATERIALS RESEARCH BULLETIN	0.953	USA	25	15	40.	15	5
MATERIALS SCI & ENGG A-STRUC MATERIALS PROPERTIES MICROSTRUCTURE & PROCESSING	0.986	SWZ	16	16	32	14	6
MATERIALS CHEMISTRY AND PHYSICS	0.561	SWZ	8	23	31	30	7
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY	0.898	SWZ	8	19	27	19	8
IOURNAL OF MATERIALS RESEARCH	2.000	USA	3	20	23	5	9
TEXTILE RESEARCH JOURNAL	0.580	USA	17	0	17	29	10

MULTIDISCIPLINARY

JOURNAL TITLE	100	COUNTRY 1	1990	1994	TOTAL	RANK/IF	RANK/USE
JUURNALIIILE	1 11-		1930	1334	IVIAL		RANNUSE
	·						

JF Rankings

NATURE	25.466	UKD	12	10	22	1 💦	3
NATURE GENETICS	22.568		0	1	1	2	12
SCIENCE	22.067	USA 🖉	1	2	3	3	8
SCIENTIFIC AMERICAN	2.881	USA	1	0	1	4	12
NATURWISSENSCHAFTEN	1.163	USA	0	1	1	5	12
SOCIAL STUDIES OF SCIENCE	0.938	UKD	1	0	1	6	12
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES	0.868	USA 📡	4	6	10 📡	87 🔉	6
SCIENCE OF THE TOTAL ENVIRONMENT	0.742	NLD	g	4	🦾 13 	8	4
MEDICAL EDUCATION	0.599	UKD	R ational sectors and the sector sectors and the sectors a	10	11	9	5
SCIENCE PROGRESS	0.514	UKD	2	0	2	10	9

Contribution Rankings

	0.271	IND	334	461	795	13	1
JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH	0.237	IND	41	59	100	14	2
NATURE	25.466	UKD 🔬	12	10	22	1	3
SCIENCE OF THE TOTAL ENVIRONMENT	0.742	NLD	9	4	13	8	4
MEDICAL EDUCATION	0.599	UKD	1	10	11	9	5
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES	0.868	USA	4	6	×10		6
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA	0	USA	4	5	9	18	7
SCIENCE	22.067	USA 🗼	1	2	3	3	8
SCIENCE PROGRESS	0.514	UKD	2	0	2	10	9
NEW SCIENTIST	0.328	UKD	1	1	2	12	9
PROCEEDINGS OF THE ROYAL IRISH ACADEMY SECTION B-BIOLOGICAL GEOLOGICAL AND CHEM SCI	0.000	UKD	2	0	2	18	9

5

Scientific Output in the Major Disciplines

The papers in the SCI are not classified by subject field or discipline. However, the Journal Citation Report of ISI does group journals under subject categories. This provides an indication of the discipline of the paper. This classification is not unique and journals may appear under several headings. It is necessary to devise non-overlapping disciplinary categories, even at the cost of some mis-allocation of papers to different categories. It is expected that the volume of data is sufficiently large so that small errors will be statistically averaged out. We have classified the papers into 11 disciplinary areas and a multidisciplinary category.

5.1 Output in the Major Disciplines:

The data shows that the overall number of papers in all disciplines combined has grown from 10103 papers in 1990 to 11314 papers in 1994. The number of papers in each field are shown below in Table 5.1.

Field	1990	1994	Field	1990	1994
Mathematics	168	189	Computer Sciences	51	113
Physics	2189	√2438 [*] -	Engineering & Tech	ि 707 (^भ ेष) (D 912 (& l
Chemistry	-2359	12480	Materials Science	- 340 (3·3	E) 376 (3.
Biology	566	556	Earth Sciences	388	504
Clinical Medicine 16-59		1761	Agriculture	363	284
Biomedical Research			Multidisciplinary	417	551
.8.70		Total	10103 11314	·	······································

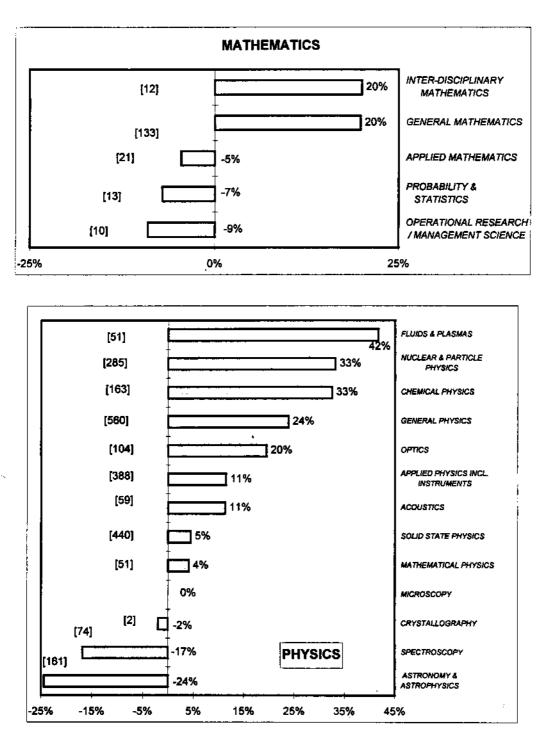
Table 5.1. Output in the different Disciplines in Science

The output in 1994 and change from 1990 to 1994 are shown in Figure 5.1 The highest output is in the areas of Chemistry, Physics and Clinical Medicine. All the fields have grown from 1990 to 1994 while agriculture has declined. The highest growth has been in the areas of Biomedical Research, Physics and Engineering and Technology.

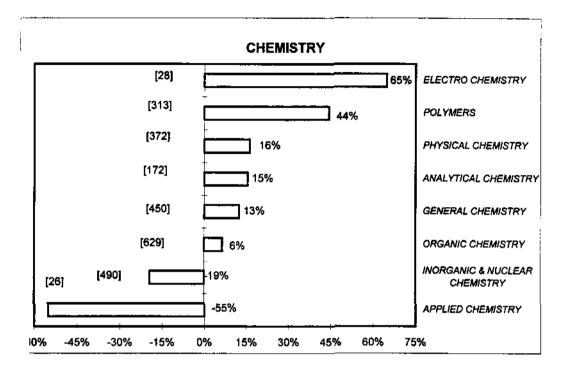
Basu & Nagpaul

Fig 5.1 Number of Indian Papers in Major Diciplines in 1994 & Change from 1990

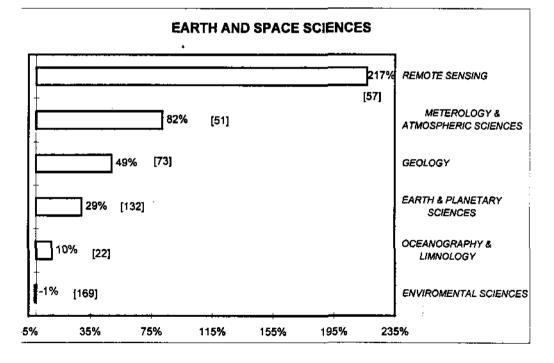
© (1994				CHEMISTRY	PHYSICS		0
			CLINICAL MEDICINE				2400
					ECHNOLOGY	BIOMEDICAL RESEARCH	1900
			EARTH & SPACE SCIENCES	MUB. TI DISCIPLINARY	ENGNEERING & TECHNOLOGY		1400
AGRICULTURE	AL SCIENCES MATHEMATICS	MATERIAL SCIENCES COMPUTERS & COMMUNICATION SCIENCES	EARTH & S				006
Yes	SOCIAL SCENCES	COMPUTERS &					400
							-100

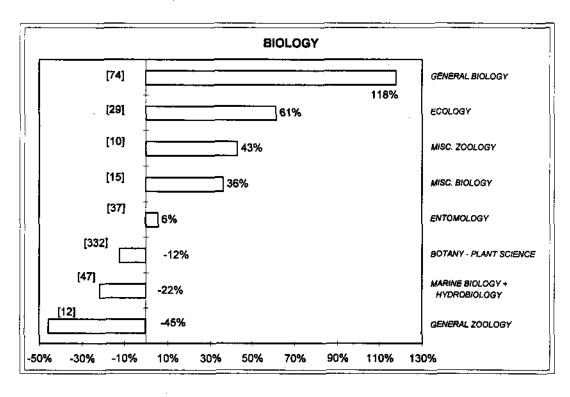

5.2 Sub-disciplinary areas

In this study, each of the major disciplines has been further broken down into subdiciplinary areas. Since these sub-disciplinary areas have been constructed by aggregating journals covering a part of a given discipline, the sub-disciplinary categories do not correspond exactly with sub-fields in the classification of the literature. However, we would still expect to obtain an idea of growth or decline in specific areas within a subject field through this process. The disciplines and sub-disciplines that make up our classification scheme are listed in Appendix 3.

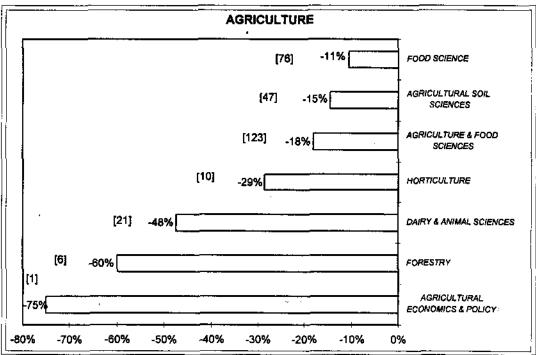

The output in 1994 and percentage change in the sub-disciplinary areas between 1990 and 1994 have been shown in Figure 5.2. The areas with highest output or where major change has taken place between 1990 and 1994 are listed in Table 5.2 below.

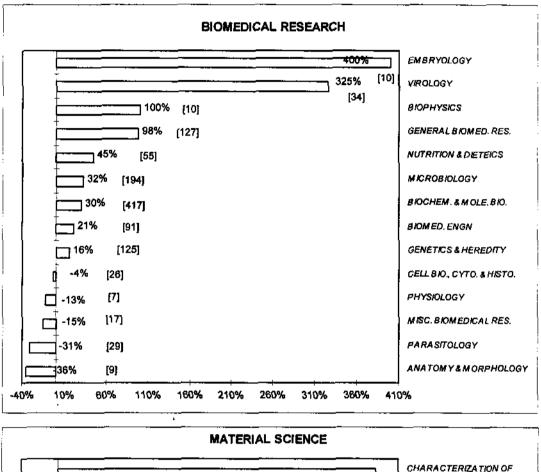
Highest Output '94	Highest growth '90-'94
General Physics (560) Biochemistry and Molecular Biology (417) Physical Chemistry (372) Botany Plant science (332) General Materials Science (301)	Interdisciplinary Computer Applications (700%) Characterization of materials (700%) Embryology (400%); Virology (325%) Nephrology (325%); Urology (233%) Neurology & Neurosurgery (182%) Haematology (178%); Addiction (167%); Opthalmology (132%) Remote Sensing (217%) Aerospace Technology (141%)
Highest Average Impact Factor '94	Maximum deciline :90-94
General & Internal Medicine (22.673)	Agricultural Economics and Policy (-75%)
General Biology (15.115)	Rsychology and Behavioural Science (-75%)
Cancer (9.455)	Software & Graphics (-100%)

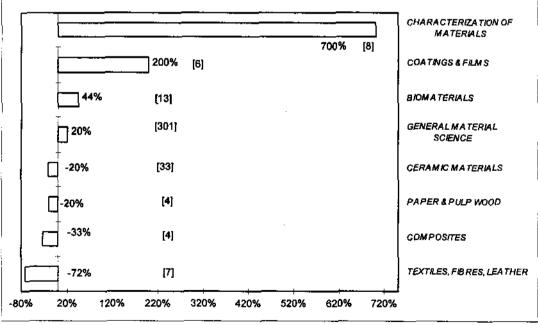

Table 5.2 Output and Change in Sub-disciplinary areas in the Major Disciplines

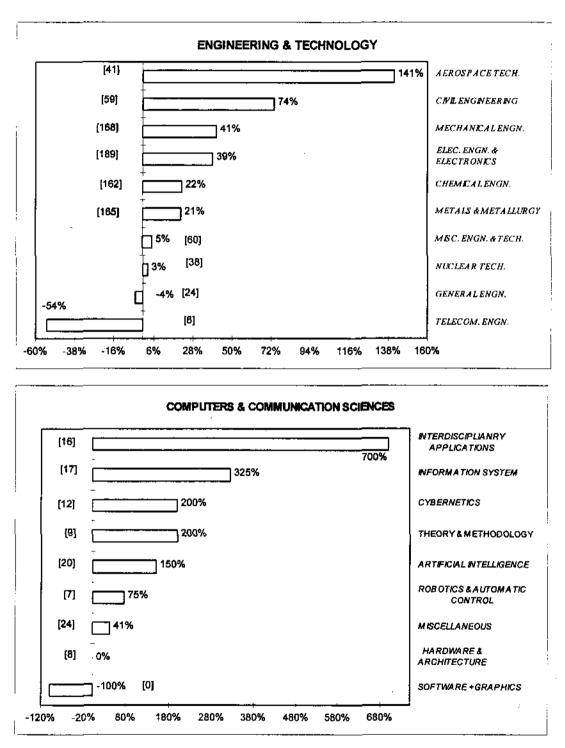


(Physical Sciences : Sub - fields)

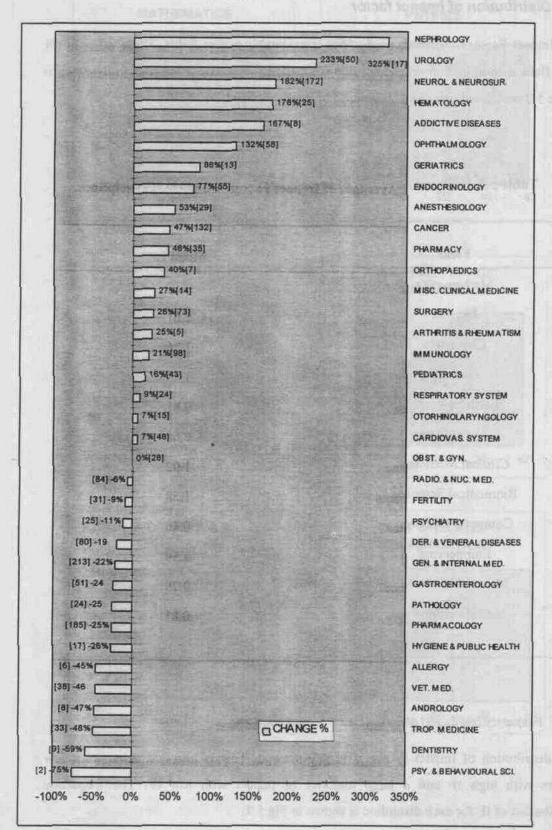



(Physical Sciences : Sub - fields)





(Bio & Medical Sciences : Sub - fields)



(Engineering Sciences : Sub - fields)

(Medical Sciences : Sub - fields)

5.3 Distribution of Impact factor

The Impact Factor of journals used varies considerably across fields. The average IF in each field is computed in order to enable comparisons between states and institutions. In Table 5.3 we show the average IF in each of the disciplines.

Field	Mean IF
Mathematics	0.52
Physics	1.61
Chemistry	1.26
Biology	1.43
Earth Sciences	0.81
Agriculture	0.68
Clinical Medicine	- 1.92
Biomedical Sciences	1.58
Computer Sciences	0.80
Engineering	0.59
Materials Science	0.79
Multidisciplinary	0.81

Table 5.3. National Averages of Impact Factor in Different Disciplines.

5.3.1 Frequency distribution of Impact Factor in each discipline

The distribution of Impact Factor is highly skewed. This means that there are a few papers with high IF and a large majority of papers with low IF. The frequency distribution of IF for each discipline is shown in Fig 5.3.

Basu & Nagpaul

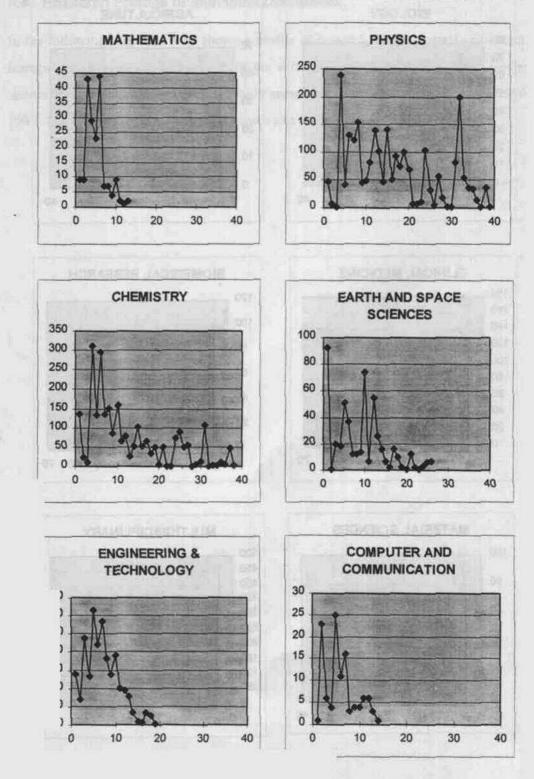


FIG 5.3 DISTRIBUTION OF PAPERS IN IMPACT FACTOR RANGE 0-40

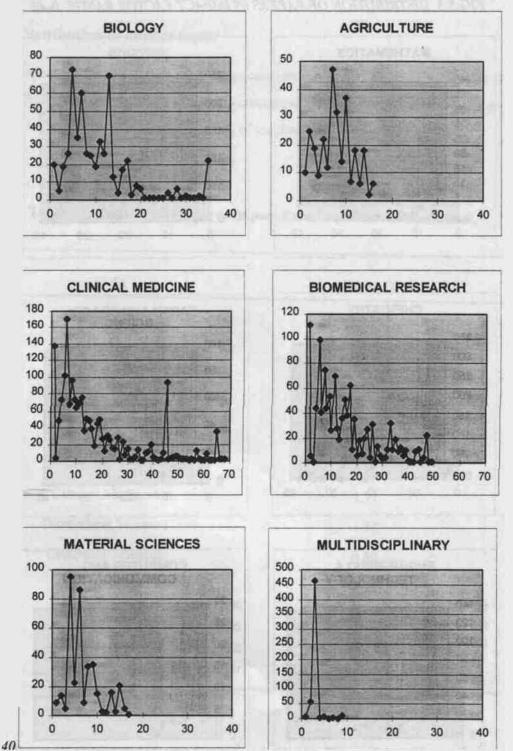


FIG 5.3 DISTRIBUTION OF PAPERS IN IMPACT FACTOR RANGE 0-

5.4 Research Profiles of Individual Disciplines

In the following pages we have shown a profile of research output, impact and extent of foreign and interstate collaboration in the different disciplines. In addition we have shown the contributions in sub-disciplinary areas and percentage change between 1990 & 1994. The areas of high output, high growth and decline have also been identified.

Mathematics		— <u>—</u>	
	⊥ <u>1990</u>	<u>1994</u>	
No. of Paper	168	189	
Rank Among Disciplines	11	11	
Average Impact Factor	0.514	0.544	
Internationally Co-authored papers	39	47	
Interstate Collaborative papers	7	10	
Sub-disciplinary Areas		Papers 94	% Change '94-90
General Mathematics		133	20%
Applied Mathematics		21	-5%
Probability & Statistics		13	-7%
Inter-disciplinary Mathematics		12	20%
Operational Research/Management Science		10	-9%
<u>Areas of High Output</u>	General Mathe Applied Mathe		
Areas of High Growth	General Mathe	ematics iry Mathematics	
Areas Showing Decline	Operational Re Probability & S Applied Mathe		ent Science

.

Physics			
	<u>1990</u>	<u>1994</u>	
No. of Paper	2189	2438	
Rank Among Disciplines	2	2	
Average Impact Factor	1. 466	1.616	
Internationally Co-authored papers	309	496	
Interstate Collaborative papers	148	232	
Sub-disciplinary Areas		Papers 94	% Change `94-90
General Physics		560	24%
Solid State Physics		440	5%
Applied Physics incl. Instruments		388	11%
Nuclear & Particle Physics		285	33%
Chemical Physics		163	33%
Astronomy & Astrophysics		161	-24%
Optics		104	20%
Crystallography		100	-2%
Spectroscopy		74	-17%
Acoustics	٨	59	11%
Fluids & Plasmas		51	42%
Mathematical Physics		51	4%
Місгозсору		2	0%
Areas of High Output	General Phy		
	Solid State F	Physics	
	Applied Phys	scis incl. Instrume	nts
	Nuclear & Pa	article Physics	
Areas of High Growth	Fluids & Plas	smas	
	Nuclear & Pa	article Physics	
	Chemical Ph	iysics	
Areas Showing Decline	Astronomy 8	Astrophysics	
	Spectroscop	У	

•

.

Chemistry			
		<u>1994</u>	
No. of Paper	2359	2480	
Rank Among Disciplines	1	1	
Average Impact Factor	1.089	1.262	
Internationally Co-authored papers :	151	207	
Interstate Collaborative papers :	63	131	
Sub-disciplinary Areas		Papers 94	% Change '94-90
Organic Chemistry		629	6%
Inorganic & Nuclear Chemistry		490	-19%
General Chemistry		450	13%
Physical Chemistry		372	16%
Polymers		313	44%
Analytical Chemistry		172	15%
Electro Chemistry		28	65%
Applied Chemistry		26	-55%
Areas of High Output	Organic Cl	nemistry	
	Inorganic &	& Nuclear Chemis	stry
	General C	hemistry	
	Physical C	hemistry	
	Polymers		
	Analytical	Chemistry	
Areas of High Growth	Electro Ch	emistry	
	Polymers		
	Physical C		
	General Cl	nemistry	1
Areas Showing Decline	Applied Ch	-	
	Inorganic &	Nuclear Chemis	stry

Biology			
	<u>1990</u>	<u>1994</u>	
No of Paper	566	556	
Rank Among Disciplines	6	6	
Average Impact Factor	0.854	1. 488	
Internationally Co-authored papers	72	93	
Interstate Collaborative papers	23	38	
Sub-disciplinary Areas		Papers 94	% Change '94-90
Botany-Plant Science		332	-12%
General Biology		74	118%
Marine Biology + Hydro-biology		47	-22%
Entomology		37	6%
Ecology		29	61%
Misc. Biology		15	36%
General Zoology		12	-45%
Misc. Zoology	ά.	10	43%
Areas of High Output	Botany-Plant	Science	
· · · · · · · · · · · · · · · · · · ·	General Biolo	ogy	
· · · · · · · · · · · · · · · · · · ·	Marine Biolog	gy + Hydro-biolog	у
Areas of High Growth	General Biolo	ogy	
	Ecology		
	Misc. Zoolog	y	
	Misc. Biology		
Areas Showing Decline :	General Zool	ogy	
		gy + Hydro-biolog	У
	Botany-Plant	Science	

.

~

Earth and Space Sciences	T		
Land and Space Sciences		19 94	
No. of Paper	388	504	
Rank Among Disciplines	8	8	
Average Impact Factor	0.921	0.89	
Internationally Co-authored papers	54	78	
Interstate Collaborative papers	38	67	
Sub-disciplinary Areas		Papers 94	% Change '94-90
Environmental Sciences		169	-1%
Earth & Planetary Sciences		132	29%
Geology		73	49%
Remote Sensing		57	217%
Meteorology & Atmospheric Sciences		51	82%
Oceanography & Limnology		22	10%
Areas of High Output	Environme	ntal Sciences	
	Earth & Pla	netary Sciences	
	Geology	-	
	Remote Se	nsing	
	Meteorolog	y & Atmospheric	Sciences
Areas of High Growth	Remote Se	nsing	
	Meteorolog	y & Atmospheric	Sciences
	Earth & Pla	inetary Sciences	
Areas Showing Decline			
	<u></u>		

Agriculture			
	<u>1990</u>	<u>1994</u>	
No. of Paper	363	284	
Rank Among Disciplines	9	10	
Average Impact Factor	0.721	0.686	
Internationally Co-authored papers	41	43	
Interstate Collaborative papers	18	12	
Sub-disciplinary Areas	Papers 90	Paper£ 94	% Change '94-90
Agriculture & Food Sciences		129	-18%
Food Science		76	-11%
Agricultural Soil Sciences		47	-15%
Dairy & Animal Sciences		21	-48%
Horticulture		10	-29%
Forestry		6	-60%
Agricultural Economics & Policy		1	-75%
Areas of High Output	Agriculture & I	Food Sciences	
	Agricultural So	oil Sciences	
	Dairy & Anima	I Sciences	
Areas of High Growth	-		
Areas Showing Decline :	Dairy & Anima	Food Sciences	:

~

•

Clinical Medicine	1	
		A
No. of Paper	1676 176	
Rank Among Disciplines	3 3	
Average Impact Factor	1.709 1.96	9
Internationally Co-authored papers	131 223	
Interstate Collaborative papers	67 94	
	07 34	
Sub-disciplinary Areas	Papers	s 94 % Change '94-90
Gastroenterology	213	-22%
Hygiene & Public Health	185	5 -25%
Neurology I & Neurosurgery	172	2 182%
Cancer	132	2 47%
Immunology	98	21%
Radio. & Nuclear. Clinical Medicine.	84	-6%
Gen. & Internal Clinical Medicine.	80	-19%
Surgery	73	26%
Ophthalmology	58	
Endocrinology	56	
Pathology	51	-24%
Urology	50	233%
Cardiovascular. System	48	7%
Paediatrics	43	16%
Andrology	38	-46%
Pharmacy	36	46%
Dentistry	33	-48%
Fertility	31	-9%
Anaesthesiology	29	53%
Dermatology. & Venereal Diseases	27	-11%
Haematology	25	178%
Respiratory System	24	9%
Pharmacology	24	-25%
Nephrology	17	325%
Allergy	17	-26%
Otorhinolaryngology	15	7%
Misc. Clinical Medicine	14	27%
Geriatrics	13	86%
Psychology & Behavioural Sciences	9	-59%
Addictive Diseases	. 8	167%
Trop. Medicine	8	-47%
Orthopaedics	7	40%
Vet. Clinical Medicine.	6	-45%
Arthritis & Rheumatism	5	25%
Obstretics . & Gynaecology	2	0%
Areas of High Output	Areas of High Growth	Areas Showing Decline
Gastroenterology	Nephrology	Obstretics & Gynaecology
Hygiene & Public Health	Urology	Psy. & Behavioural Sci.
Neurology & Neurosurgery	Neurology & Neurosurgery	Dentistry
Cancer	-	÷

Biomedical Research			
	<u>1990</u>	<u>1994</u>	
No. of Paper	879	1150	
Rank Among Disciplines	4	4	
Average Impact Factor	1.449	1.63	
Internationally Co-authored papers	91	173	
Interstate Collaborative papers	27	68	
Sub-disciplinary Areas		Papers 94	% Change '94-90
Biochem. & Molecular . Bio.		417	30%
Microbiology		194	32%
General Biomed. Research .		127	98%
Genetics & Heredity		125	16%
Biomed. Engineering		91	21%
Nutrition & Dietetics		55	45%
Virology		34	325%
Parasitology		29	-31%
Cell Biology., Cytology. & Histology		26	-4%
Misc. Biomedcial Research.		17	-15%
Embryology		10	400%
Biophysics		10	100%

Areas of High Output	Biochem. & Molecular Biology	
	Microbiology	
	General Biomed. Research	

Areas of High Growth

Anatomy & Morphology

Physiology

Embryology Virology Biophysics

9

7

-36%

-13%

Areas Showing Decline

Anatomy & Morphology Parasitology Misc. Biomedcial Research

General Biomed. Research

Engineering & Technology			
	<u>1990</u>	<u>1994</u>	
No. of Paper :	707	912	
Rank Among Disciplines :	5	5	
Average Impact Factor :	0.623	0.598	
Internationally Co-authored papers :	74	91	
Interstate Collaborative papers :	59	92	
Sub-disciplinary Areas		Papers 94	% Change '94-90
Electrical. Engineering. & Electronics		189	39%
Mechanical Engineering.		168	4 1%

indonania Englidoring.		
Metals & Metallurgy	165	21%
Chemical Engineering.	162	22%
Misc. Engineering. & Tech	60	5%
Civil Engineering	59	74%
Aerospace Technology	41	141%
Nuclear Technology.	38	3%
General Engineering.	24	-4%
Telecommunication. Engineering.	6	-54%

Areas of High Output	Elec. Engineering. & Electronics
	Mechanical Engineering.
	Metals & Metallurgy
	Chemical Engineering.
	· - · ·

Areas of High Growth	Aerospace Technology
	Civil Engineering
	Mechanical Engineering.
Areas Showing Decline	Telecommunication, Engineering

Telecommunication. Engineering. General Engineering.

Computer & Communication S	ciences		
	<u>1990</u>	<u>1994</u>	
No. of Paper	51	113	
Rank Among Disciplines	12	12	
Average Impact Factor	0.727	0.819	
Internationally Co-authored papers	14	25	
Interstate Collaborative papers	3	6	
Sub-disciplinary Areas		Papers 94	% Change '94-90
Miscellaneous		24	41%
Artificial Intelligence		20	150%
Information System		17	325%
Interdisciplinary Applications		16	700%
Cybernetics		12	200%
Theory & Methodology		9	200%
Hardware & Architecture		8	0%
Robotics & Automatic Control		7	75%
Software + Graphics		0	-100%
Areas of High Output	Miscellaneou Artificial Intel Information S	ligence	
Areas of High Growth	Interdisciplina Information S Cybernetics	ary Applications System	
Areas Showing Decline	Soft	ware + Graphics	

Material Science			
	<u>1990</u>	<u>1994</u>	
No. of Paper	340	376	
Rank Among Disciplines	10	9	
Average Impact Factor	0.734	0.802	
Internationally Co-authored papers	30	37	
Interstate Collaborative papers	17	31	
Sub-disciplinary Areas		Papers 94	% Change '94-90
General Material Science		301	20%
Ceramic Materials		33	-20%
Bio-materials		13	44%
Characterisation of Materials		8	700%
Textiles, Fibres, Leather		7	-72%
Coatings & Films		6	200%
Paper & Pulp Wood		4	-20%
Composites		4	-33%
Areas of High Output	General Mate Ceramic Mate Bio-materials	erials	
Areas of High Growth	Characterisat Coatings & F Bio-materials		
Areas Showing Decline	Textiles, Fibro Composites Paper & Pulp	·	

Multidisciplinary			
	<u>1990</u>	<u>1994</u>	
No. of Paper	417	551	
Rank Among Disciplines	7	7	
Average Impact Factor	1.179	0.95	
Internationally Co-authored papers	19	32	
Interstate Collaborative papers	11	30	

.

、

6 Sectoral Output in the basic Scientific disciplines

In this chapter we examine the output of scientific publications from the different sectors in the SCI. The broad sectors are,

6.1 Major Sectors

1. Central Government Sector

- Major Scientific Agencies
- Other Agencies of Ministries and Departments

2. State government Sector

3. Academic Sector

- Universities
- Other academic institutions (deemed universities, IIT's, institutes, advanced study, colleges, schools etc.).

4. Industrial Sector.

• Private and Public Sector

5. Health Sector

Hospitals & Medical colleges

The relative output of the sectors is shown in Fig.6.1. After assigning the output to the respective sectors there remained about 3% addresses that could not be assigned. In addition there were about 0.2% papers with only residential addresses.

A list of the major Agencies and other ministries and departments of the Government of India is shown in Table 6.1

٠

.

Table 6.1. Major Scientific Agencies and Other Ministries and Departments of the Government

1	DAE	Department of Atomic Energy	24	MHFW	Ministry of Health and Family Welfare
2	CSIR	Council of Scientific and Industrial Research	25	MHA	Ministry of Home Affairs
3	DRDO	Defence Research Development Organisation	26	DOCu	Department of Culture
4	DOE	Department of Electronics	27	DHI	Department of Heavy Industry
5	MOEn	Ministry of Environment and Forests	28	DID	Department of Industrial Development
6	ICAR	Indian Council of Agricultural Research	29	DSSI	Department of Small Scale Industries, Agro and Rural Industries
7	ICMR	Indian Council of Medical Research	30	MI&B	Ministry of Information and Broadcasting
8	DBT	Department of Biology-Technology	31	MOL	Ministry of Labour
9	DSIR	Department of Scientific and Industrial Research	32	MOM	Ministry of Mines
10	DOS	Department of Space	33	MPNG	Ministry of Petroleum and Natural Gas
11	DA&C	Department of Agriculture and Cooperation	34	DOSt	Department of Statistics
12	DAHD	Department of Animal Husbandary and Dairying	35	MOP	Ministry of Power
13	DCP	Department of Chemicals and Petrochemicals	36	MOR	Ministry of Railways
14	DOF	Department of Fertilizers	37	MRD	Ministry of Rural Development
15	DCA	Department of Civil Aviation	38	MOSI	Ministry of Steel
16	MCS	Department of Civil Supplies	39	MSTt	Ministry of Surface Transport
17	MOC	Ministry of Coal	40	MUD	Ministry of Urban Development
18	MOCo	Ministry of Commerce	41	MOW	Ministry of Welfare
19	DOT	Department of Telecommunications	42	MOTx	Ministry of Textiles
20	DODe	Depatment of Defence	43	MWR	Ministry of Water Resources
21	DDPS	Department of Defence Production and Supplies	44	MHRD	Ministry of Human Resources Development
22	MOFo	Ministry of Food	45	MNCER	Ministry of Non Conventional Energy Resources
23	MEPI	Ministry of Food Processing Industries	46	DOM	Department of Meteorology

6.1.1 Sectoral Output

,

The output of the sectors for the years 1994 and 1990 has been tabulated (Table 6.2a, b) and their relative proportions indicated in Figure 6.1.

An analysis of the data shows that the *Academic sector* is by far the largest sector in terms of scientific publications, accounting for almost *half* of the total output.

This is followed by the Government Sector, *Major Scientific Agencies* and *other* agencies accounting for one -third of the output.

Institutions associated with the *Ministries and Departments* of the Government of India, other than the major agencies, amounted to 5.6 percent.

The Health Sector accounted for 4.5 percent of the total output.

The Industrial sector accounted for 2.8 percent,

The State Government Sector accounted for 0.7 percent,

Private addresses accounted for 0.1 percent, while 3 percent of the papers could not be identified with any of the sectors.

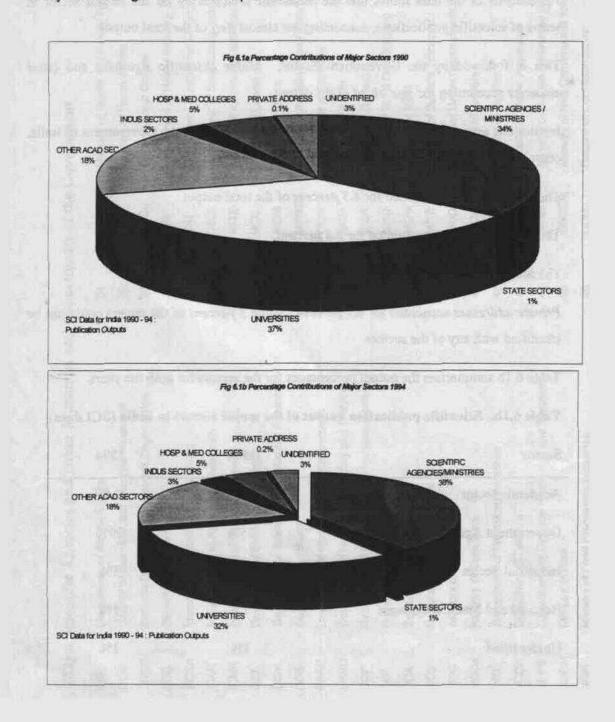

Table 6.1b summarises the output percentages for the sectors for both the years.

Table 6.1b. Scientific publication output of the major sectors in India (SCI data)

Sector	1990	1994
Academic sector	54%	49.8%
Government Agencies	35%	39%
Industrial Sector	2%	3%
Hospital and Medical Colleges	5%	5%
Unidentified	3%	3%

an

Though there is a increase in the overall contributions the contribution percentages of the Major sectors have very little changes. Scientific Agencies and Universities are the only sectors which have shown any substantial change. The industrial sector has marginal growth All the remaining sectors have maintained there contributions. There is very little change in the overall picture between 1990 and 1994.

SECTORS	MAT	PHY	CHE	BIO	GEO	AGRI	MED	BMD	BNGG	COMP	MIL	M.L.	TOTAL	%	AVGIF
· · · · · · · · · · · · · · · · · · ·		1			`	Ì		$\overline{\}$	<u> </u>	~	Ν.	~			
MAJOR SCIENTIFIC AGENCIES	۰.		•	<u>``</u>	```	÷.,				×	/	. ``	\		
DAE		0 62			-							32		70 8.82	
CSIR		3 16					101	207				83	93 14	51 10.94	% _I 1.325
DRDO		3	7 16	1	7	2	18	7				14	6 1	40 1.06	% 0.913
DOE			2		1				7	• .	1		2	13 0.10	% 0.543
MOEn		2	2	16	8	•	2						2	30 0.23	% 0.562
ICAR			8				11	33	3 3	ļ			16 1	65 1.24	% 0.733
ICMR			2	9) 2	: 4	101	44	ł		1		7 1	70 1.28	% 1.649
DBT				4	ļ	4	27	21	l				3	59 0.44	% 2.929
DST		23	1 - 107	13	· · · · 43	; ,	21	44	l 6			23	65 5	63 4.17	% ¹ .446
DOS		6	17		72	2			27			3	13 1	83 1.38	% 1. 18 7
MEW		2	Ż. 6	7	' 1	1	392	76	3	;	3		5 4	93 3.72	
														33	5
OTHER MINISTRIES/DEPARTMENTS	3	11 3 ⁻	1 53	16	34	10	411	85	5 24	2	1	4	26 7	46 5.62	% 1.663
STATE SECTORS		0	7 3	3	; 10) 2	58	e	; 0	1 1	0	1	1	91 0,69	% 1.259
UNIVERSITIES	7	19 9 9	9 1 144	307	160) 132	320) 469	. 265) a	5) (1	10)	178 41	88 31.57	 % 1.103
OTHER ACADEMIC SECTORS	5	i1 61	1 610	53	93	22	46	164	1 ^J 452	: /s	7 J ₁	34	105 24	108 18.15	- - -
PRIVATE SECTORS		6	9 51	8	3	i 1	196	44	1 25	i :	2	6	18 3	69 ⁴ 278	2 % 1.531
HOSPITALS & MEDICAL COLLEGES			5 11	4	Ļ		√ 500	69	9 2	:			10 E	02 4.54	% 1.835
PRIVATE ADDRESS			1	3	3	l I	4		1				11	23 0.17	 % 2.859
UNDENTIFIED	1	0 7	7 44	46	23	i 40	68	35	5 29		4	10	27 4	13 3.11	× 1.309
TOTAL	21	0 286	2733	620	585	310	2364	1363	1052	131	1 42	20 6	519 132	67 100	<u>k</u> 1.358

Table 6.2a SECTORAL OUTPUT OF SCIENTIFIC PAPERS BY DISCIPLINES : SCI Data 1994

-

SECTOR	MATHS	PHAS	CHEM	BO	EARTH	AGRI	MED	BMD	BN	ω α	M MT	. <u>M</u>	1	TOTAL.	Qann%	AVG_IF
		<u></u>					,									
MAJOR SCIENTIFIC AGENCIES			· .						•							
DAE		41 44	7 16	1	14 6	; 1:	2	78	66	52	5	14	22	918	8.25%	1.557
CSIR		4 12	2 38	3	62 108	3	3 1.	29 1	48	103	2	65	74	1233	11. 08%	t. 271
DRDO		2	2 1	4	3 3	; ;	3	20	2	31		16	5	119	1.07%	0.867
DOE			1					1		1	1			4	0.04%	0.361
MOEn					11 3	, :	3	2					1	20	0.18%	0.620
KAR			1 :	9	43 9) 7	5	15	26	6		1	22	207	1.86%	0.722
ICMR			1	2	4 2	· ۲	1 1	09	25				6	149	1.34%	2.274
DBT								18	4				1	23	0.21%	2,255
DST		- 18	28	9	12 24	ļ		20	34	5		16	31 -	413	3.71%	1.545
DOS		2 3	8	9	1 33	\$			3	11	1	2	6	106	0.95%	1.526
MEW			3	4	3 1	:	2 3	93	49		1	1	3	460	4.14%	1.623
OTHER MINISTRIES / DEPARTMENTS		28 2	92	8	9 12	! '	6	6	14	12	5	15	15	179	1.61%	0.994
STATE SECTORS		0	3	4	2 4	ب ا	8	44	4	0	٥	2	2	73	0.66%	1.050
UNIVERSITIES		60 93	10 114	11 ;	347 151	17	5 3	26, 3	90	218 ;	6	110	153	4007	36.02%	1.000
OTHER ACADEMIC SECTORS		41 58	9 52	8	33 71	2	0	51 1	15	- [/] 309	J 32	119	71	1979	17. 79%	1.135
PRIVATE SECTORS		2 2	з 4	4	7 6	5.	31	43	21	17	1	5	5	277	2.49%	1.647
HOSPITALS & MEDICAL COLLEGES			9 1	6	8 1		15	00	51	1	1		9	596	5.36%	1. 750
PRIVATE ADDRESS			1		2	: :	2	1		4			1	11	0.10%	0.779
UNDENTIFIED		4 4	7. 7.	2	41 11	4	4	56	17	26	2	15	15	350	3.15%	1.522
TOTAL		82 244	7 250		300 447	/ 38	7 19		69	796		381	442	11124	100.00%	1.236

-

Table 6.2b : Sectoral Ouput Of Scientific Papers by Disciplines : SCI 1990

6.1.2 Change in Sectoral Output (1990-1994)

It is seen that though there has been an overall increase in the number of publications the relative proportion of the contribution of the major sectors has not changed substantially in the period 1990-1994 (Figure 6.1a,b). The overall output of the scientific agencies has improved by a few percentage points. Incidentally it may be pointed out that not all the research work within an organisation need be published in the form of journal articles, an example being DRDO, much of whose research may be classifed.

The *Major Scientific Agencies* have increased their output by 3.4 percentage points, and other ministries by 4 percentage points.

The Academic sector has declined by 4 percentage points.

The Health sector has increased its scientific publications by 0.9 percentage points.

The Industrial sector contributed 0.3 percent more papers in 1994.

Publications from private addresses doubled to 0.2 percent of the total in 1994.

6.1.3 Impact Factor

In comparing the impact factor of different <u>sectors</u>, it should be kept in mind that many sectors publish in just a few disciplines while others publish in a variety of disciplines. There are significant differences in the citation patterns and impact factors of journals in different disciplines. Therefore comparisons of impact may not always be justified. The average Impact Factors for all the sectors have been tabulated in Table (6.3a,b)

.

SECTORS	MATHS	PHYS	CHEM	810	EARTH	AGRI	MEDICINE	BIOMED	ENGG	COMP.	MATER.	MULTI	<u></u>
MAJOR SCIENTIFIC AGENCIES													
DAE	D.528	2.015	1.229	1.199	0.919	0.754	2.357	2.936	0.676	0.994	0.599	1.086	1.733
CSIR	0.129	1.515	1.475	1.466	0.889	0.847	2.045	1.775	0.620	1.267	0.798	0.278	1.328
OGRO		1.299	0.866	1.257	0.657	0.429	0.894	0.953	0.672		0.956	0.260	0.913
DOE		0.795			0.892				0.487	0.629		0.271	0.543
MCEn		1.307		0.556	0.496		0.418					0.271	0.562
ICAR			0.901	0.725	- 1.059	0.664	0.955	0.898	0.486			0.267	0.73
ICMR			0.783	0.775	0.000	0.953	1.571	1.297		0.400		7,392	1.649
DBT				-8.056		1.689	2.489	3.150			• .	0,169	- 2.929
DST		1,858	1.629	1.004	0.805		0.838	1.903	0.611		1.130	0.271	1.44
DOS		1.859	0.840		1.119				0.443		0.615	0.271	1.18
MHFW		0.308	0.510	8.983	0.250	1.103	1.995	1.299-		0.887	· .	10.295	2.034
OTHER MINISTRIES/DEPTS	0.621	1.085	1.620	4.315	0.717	0.892	1.950	1.285	0.591	0.766	0.351	2,196	1.66
STATE SECTORS		1.052	0.598	1.308	1.179	0.438	1.425	0.919			0.357	0.271	1.25
UNIVERSITIES	0.487	1.348	0.966		0.669	0.618	1.763	- 1.291	0.581	0.851	0.740	0.289	1.10
OTHER ACÀDEMIC SECTORS	0.534	1.670	1.600	0.953	0.658	0.654	1.560	1.801	0.595	0.759	0.817	1.166	1.27
PRIVATE SECTORS	0.423	0.892	1.168	2.701	0.520	0.648	1.961	1.401	0.552	0.714	0.751	0.287	1.53
HOSPITALS & MEDICAL COLLEGES		1.705	0.376	5.026			1.884	1.114	0.739			4.993	1.83
PRIVATE ADDRESS		0.308	·	0.400	1.022		1.846		0.427			4.852	- 2.85
UNIDENTIFIED	0.752	1.381	1.054	1.017	0.668	0.669	2.876	1.947	0.447	0.589	0.544	0.258	1.30
	0.529	1.618	1.255	1.535	0.790	0.693	 1.910	1.544	0.592	0.794	0.784	0.869	1.35

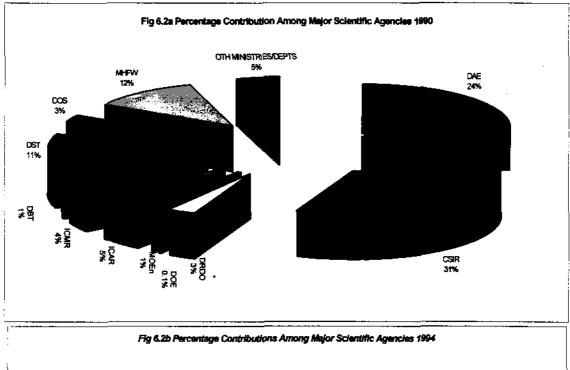
Table 6.3a : AVERAGE IMPACT FACTOR OF SECTORAL OUPUT BY DISCIPLINE : SCI Data 1994 for India

SECTORS	MAT	PHY	CHE	B10	GEO	AGRI	MED	BMD	ENG	COMP	MTL	MUL	(TOTAL)
MAJOR SCIENTIFIC AGENCIES													
DAE	0.385	2.808-	1.397	1.541	2.451	0.502	2.659	2.624	1.040	0.398	1.369	1.530	2.209
CSIR	0.097	1.999	1.879	1.607	0.840	1.052	1.601	2.482	0.598	3.167	1.019	0.349	1.559
DRDQ		2.185	0.990	0.419	1.533	0.286	0.804	3.335	0.694		0.837	0.312	1.074
DOE		1.589					0.000		3.410	0.629			1.766
MOEn				0.809	1.323	0.000	D.418					0.542	0.843
ICAR		0.000	0.801	0.742	0.824	0.381	0.700	1.140	0.243		0.000	0.194	0.584
ICM R			0.783	1.744	0.000	3.811	1,456	2.283				8.624	1.881
DBT							3.734	16.536 -				0.508	<u>7.5</u> 14
DST		2.358	1.959	1.088	1.442		0.879	2.463	0.733		1.624	0.568	1.937
DOS	0.000	2.983	0.653	0.000	2.441			0.000	1.089	0.000	0.923	0.587	2.048
MHFW		0.205	0.765	20.959	0.250	0.552	1.990	2.014		2.661	0.000	17.158	2.180
OTHER MINISTRIES/DEPARTMENTS	0.687	1.160	3.066	7.672	2.031	1.487	133.592	7.804	1.182	3.219	0.094	3.806	6.931
STATE SECTORS		2.455	0.449	1.963	2.947	0.109	1.878	1.378			0.179	0.136	1.569
UNIVERSITIES	0.641	1.449	8.969	1.327	0.709	0.466	1.730	1.553	0.708	3.544	0.740	8.337	1.152
OTHER ACADEMIC SECTORS	0.664	1.733	1.849	1.531	0.862	0.719	1.407	2.569	0.870	1.588	0.919	1.724	1,551
PRIVATE SECTORS	1.270	0.349	1.354	3.087	0.260	0.216	2.688	2.936	0.812	1.427	0.901	1.034	2.040
HOSPITALS & MEDICAL COLLEGES		1.136	0.259	2.513	0.000		1.884	1.507	1.477	0.000		5.548	1.854
PRIVATE ADDRESS		0.308			1.534	0.000	7.383		0.107			53.371	5,978
UNIDENTIFIED	1.880	2.263	0.644	1.141	1.396	0.608	3,493	4.009	0.498	1.179	0.362	0.461	1.544
TOTAL	0.611	1.891	1.370	1.587	1.034	0.555	2.362	2.172	0.783	1.824	0.864	1.217	1.619

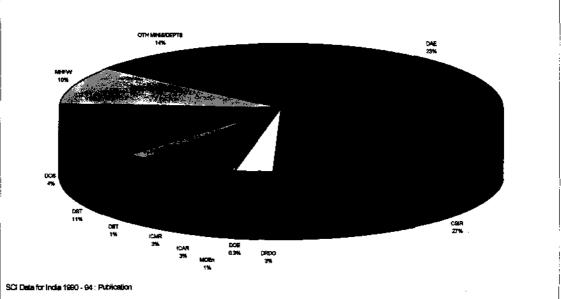
Table 6.3b : AVERAGE IMPACT FACTOR OF SECTORAL OUPUT BY DISCIPLINE : SCI Data 1990 for India

87

6.2 The Major Scientific Agencies

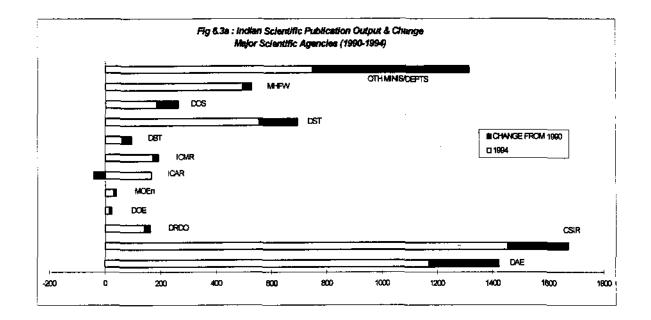

The major scientific agencies are administered using government funds and have affiliated institutions and laboratories. Unlike the university sector there is less or none of the teaching function. A list of major scientific agencies and departments has been shown in Table 6.1

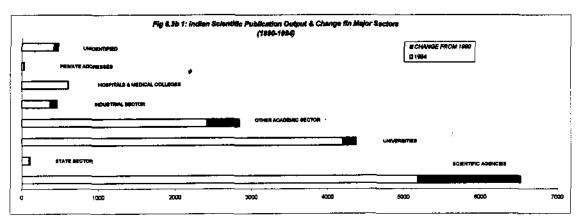
The distribution of the scientific output of the major scientific agencies and other ministries is shown in Figure 6.2. Among the Major Scientific Agencies, the largest output is from the *Council of Scientific & Industrial Research* (CSIR) whose output declined slightly from 11.1% in 1990 to 10.9% in 1994, followed by *Department of Atomic Energy* (DAE including affiliated institutions) whose output increased form 8.3% to 8.8%. The *Department of Science & Technology* (DST, and affiliated institutions) accounted for 4.2% of the total in 1994, an increase of 0.5 percentage points. The output of the *Indian Council of Agricultural Research* (ICAR), fell by 0.7% from 1.9% to 1.2%.

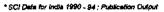

The average impact factors are highest for publications from the Department of Biotechnology (2.93) and Ministry of Health and Family Welfare (2.03). For Hospitals and medical colleges the IF is 1.84 while for the Indian Council of Medical Research (ICMR) it is 1.65. These figures, however, may reflect the higher impact of journals in the Medical and Biological Sciences.

The Department of Atomic Energy has a high impact (1.73), as also the Department of Science & Technology (1.65).

CSIR and DAE are the top contributors for both the years and have both registered an increase from 90 to 94. While most of the agencies have either maintained or increased their contributions the Ministry of Health & Familty Welfare, ICAR and ICMR have shown a decline. The decline in contributions from these agencies are made up by other Ministries and departments which have registered an increase of around 180 % from 90 to 94.




* SC/ Data for India 1990 - 94 : Publication Output


89

Amongst the Major Scientific Agencies there is a obvious increase in most cases with almost all the agencies showing a positive change. ICAR, however, is the only agency which has upset this trend. Though CSIR and DAE are the top contributors their induvidual growth is less than the growth of the other ministries and departments put together.

All the Major sectors have registered an increase from 1990 to 1994. The Major Scientific Agencies have shown a significant increase in the contribution. The other noticable positive changes are of other academic sectors and Universities.

6.3 The Academic sector

Compared to the 1990 values, we see that the output of the Academic sector has fallen by 4 percentage points, accounted for by a decline of 5.4 percentage points in the university output and an increase of 0.4 percentage points in the other Academic sector, which includes the Indian Institutes of Technology, deemed universities and Centres for Advanced Study. The University sector has an average IF (1.1) that is lower than the national average, (1.3) while in the Other Academic sector the average IF is better (1.26) but still lower than the national average.

6.4 The Industrial sector

The *Industrial sector* accounts for less than *3 percent* of the publications. The largest output is in the area of *Medicine*, which accounts for more than half the papers published in this sector. The *Average Impact Factor 1.53* is better than the *national average of* 1.33.

6.5 Private Addresses

The number of papers from private addresses is a small proportion of the total, being only 0.1% in 1990. This number has doubled in 1994. These represent persons who are working from outside organised science, and could be retired persons or those otherwise not employed. The average Impact of these papers is high, much higher than the national average.

6.6 Performance of the sectors in different disciplines

The change in publication output of the major scientific Agencies are shown in Table 6.4. With the exception of *ICAR*, all the agencies have shown an increased output in 1994. In Table 6.5 we show the sectors/agencies which have performed well in the different disciplines either in terms of output or average Impact Factor of its papers. Except for *Medicine and Engineering*, and related areas of *Computers* and *Materials*, the *Universities* have the highest contribution in all the areas) In *Medicine* the *Hospitals make the largest contribution*, while *the other Acdemic sector* (including IIT's) *have* the highest output in Engineering, Computers and Communication, and Material Science.

6.7 Impact Factors of Sectors/Agencies in different disciplines.

The Department of Atomic Energy (DAE) had the highest impact in Physics, and second highest impact in Computers, Engineering, and Biomedical Research.

The Department of Science and Technology (DST) had the highest impact in Chemistry and Materials Science.

The Department of Bio-technology (DBT) had the highest impact in Bio-medical Research and Agriculture, and the second highest impact in Medicine and Biology.

DRDO had the second highest rank by impact in Materials Science and the third from the top in Engineering.

The multi-disciplinary papers had very high impact, those from the Ministry of Health and Family Welfare (associated institutes) having the highest impact (> 10) followed by the Medical sector and papers from private addresses.

SECTORS	CHE	РНҮ	MED	BMD	ENG	ВЮ	ĜEO	MUL	AGR	MTL	MAT	СОМ	τοτ	CHANGE
MAJOR SCIENTIFIC AGENCIES					•									
DAË	22	176	10	-7	28	4	10	9	-4	18	-11	-3	252 4	27.45%
CSIR	105	39	-28	59	-4	6	-6	19	8	18	-1	3	218	17.68%
DRDO	2	15	-2	5	1	-2	4	1	-1	-2	0	0	21	17.65%
DOE	0	1	-1	0	6	0	1	2	0	0	0	0	9	225.00%
MOEn	0	2	0	0	O	5	5	1	-3	0	0	0	10	50.00%
ICAR	-1	-1	-4	7	-3	1	-2	-6	-32	-1	0	0	-42	-20.29%
ICMR	0	0	-8	19	0	5	0	1	3	0	O	1	21	14.09%
DBT	0	0	9	17	0	4	0	2	4	0	0	0	36	156.52%
DST	18	49	1	10	1	1	19	34	0	7	0	0	140	33.90%
DOS	-2	23	0	-3	16	-1	39	7	0	1	-2	-1	77	72.64%
MHFW	2	-1	-1	27	0	4	0	2	-1	-1	0	2	33	7.17%
OTHER MINISTRIES/DEPTS	31	53	411	85	24	16	26	34	4	10	31	21	746	316.76%

Table 6.4 :Sector-wise change from 1990 to 1994 : Major Scientific Agencies

•

Mathematics		Physics	
High Output	High Impact	<u>High Output</u>	High Impact
Universities (79)	Unidentified(.75)	Universities (999)	DAE (2.0)
Other Academic(51)	Other Min & Dep(.6)	DAE (623)	DOS (1.86)
DAE (30)	Other Academic(.53))	Other Academic(61)	l) DST (1.86)
Chemistry		Biology	
<u>High Output</u>	High Impact	<u>High Output</u>	High Impact
Universities (1144)	DST(1.6)	Universities (307)	MHFW(9.0)
Other Academic (610) Other Min. (1.6)	CSIR (68)	DBT (8.5)
CSIR (488)	Other Acad. (1.6)	Other Acad. (53)	Hosp & med Coll (5)
Earth & Space Sciences	3	Agriculture	•
<u>High Output</u>	High Impact	<u>High Output</u>	High Impact
Universities(160)	State Sector(1.2)	Universities (132)	DBT (1.7)
CSIR(102)	DOS (1.1)	ICAR (43)	MHFW (1.1)
DOS (72)	ICAR (1.1)	CSIR (41)	ICMR(0.95)
Medicine		Bio-medical Research	; ,,, ,,
<u>High Output</u>	High Impact	High Output	High Impact
Hosp. & Med coll (50	00) Unidentified (2.9)	Universities(469)	DBT (3.2)
Other Min. & Dept (4	111) DBT (2.5)	CSIR (207)	DAE (2.9)
MHFW (392)	DAE (2.4)	Other Acad. (164)	Unidentified (19)
Engineering	······································	Computer & Communi	cation
<u>High Output</u>	High Impact	<u>High Output</u>	High Impact
Other Acad. (452)	Hosp. & Med coll(.74)	Other Acad. (67)	CSIR (1.27)
Universities(265)	DAE(.68)	Universities (25)	DAE (0.99)
CSIR (99)	DRDO (.67)	Other Min. & Dept ((21) MHFW (0.89)
Material Science		Multidisciplinary	
<u>High Output</u>	High Impact	High Output	High Impact
Other Acad. (134)	DST (1.13)	Universities (178)	MHFW (10.3)
Universities (110)	DRDO (0.96)	Other Acad. (105)	Hosp. & Med coll(5.0)
CSIR (83)	Other Acad. (0.82)	CSIR (93)	Private Addresses (4.85)

.

Table 6.5 : Performance of the Sectors in the Different Disciplines : 1994

7

Scientific Output of States

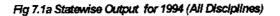
In this chapter we have examined the output of 28 states and Union Territories in India in the different scientific disciplines for the years 1990 & 1994. Given that there is a large variation in the size of the states, their population, scientific outlay, as well as the distribution of scientific institutions within the states, it is expected that there will be wide variations in scientific output from these states.

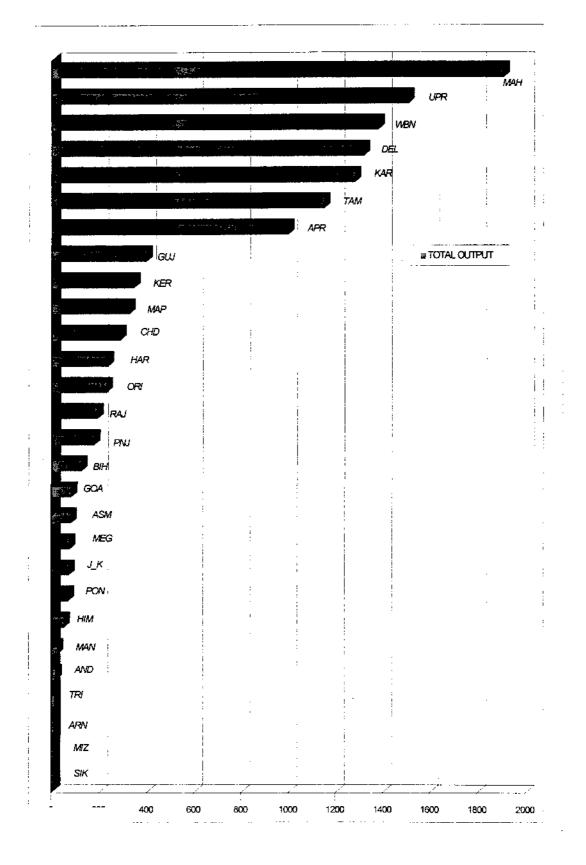
ANDAMAN & NICOBAR	AND	MADHYA PRADESH	МАР
ANDHRA PRADESH	APR	MAHARASHTRA	MHA
ARUNACHAL PRADESH	ARN	MANIPUR	MAN
ASSAM	ASM	MEGHALAYA	MEG
BIHAR	BIH	MIZORAM	MIZ
CHANDIGARH	CHD	ORISSA	ORI
DELHI	DEL	PONDICHERRY	PON
GOA	GOA	PUNJAB	PNJ
GUJARAT	GUJ	RAJASTHAN	RAJ
HARYANA	HAR	SIKKIM	SIK
HIMACHAL PRADESH	НІМ	TAMIL NADU	TAM
JAMMU & KASHMIR	J&K	TRIPURA	TRI
KARNATAKA	KAR	UTTAR PRADESH	UPR
KERALA	KER	WEST BENGAL	WBN

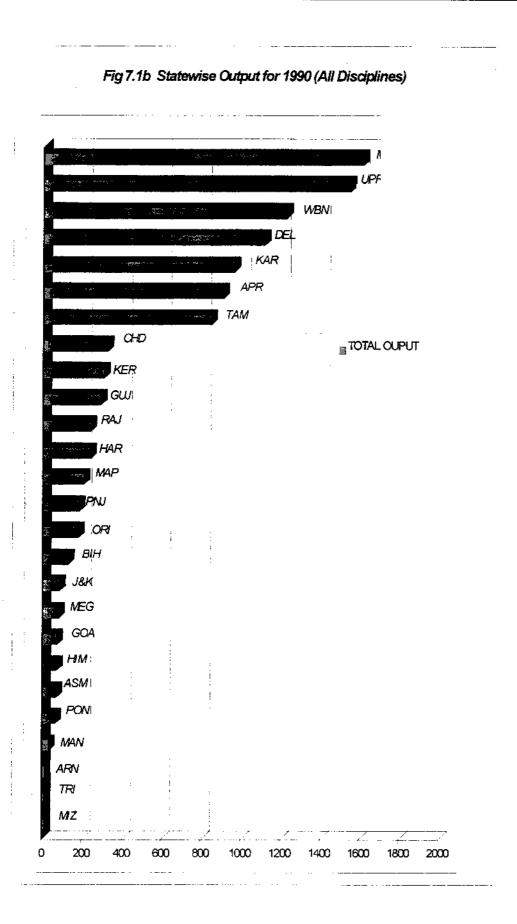
Table : States and Union territories of India

7.1 Scientific publications from Indian states

There is a wide variation seen in the volume of output from different states and Union Territories, given their intrinsic differences, as well as differences in size (Fig. 7.1a,b).

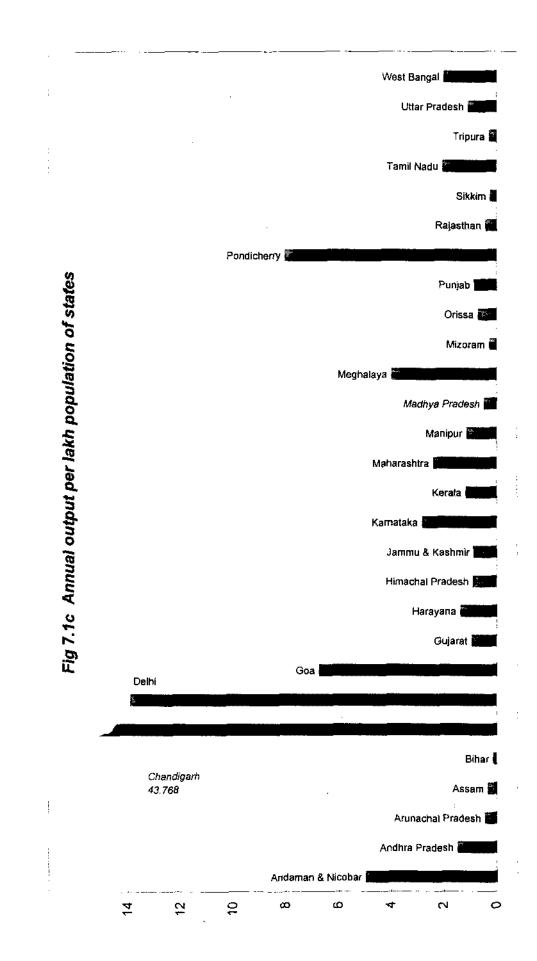

The scientific output normalised by the population of the state is shown in Section 7.2, Fig.7.1c.


The states with the highest volume of published work in 1990 were *Maharashtra*, *UP*, *West Bengal* and *Delhi* with more than 1000 papers each, accounting for over 50 percent of India's output in the *SCI*. Since 1994 they have been joined by *Karnataka* and *Tamil Nadu*, the latter overtaking *Andhra Pradesh* to obtain the sixth rank in terms of overall production. These states together account for almost 70 percent of India's output.


The highest growth in publications since 1990 has been in the southern and western states of *Karnataka*. *Tamil Nadu* and *Maharashtra*, whereas almost all the northern states, *Rajasthan*, *Uttar Pradesh*, *Chandigarh*, *Himachal Pradesh*, *Jammu and Kashmir* have declined in terms of scientific output. Other states that have shown an increase are *Madhya Pradesh*, *Gujarat* and *Andhra Pradesh*. (Table 7.1c and Section 7.3).

The publication output of the Indian states in different disciplines in the Science Citation Index is shown in Table 7.1a,b for the years 1990 and 1994. The performance of the states in terms of output in different disciplines is shown in a series of 12 graphs in Section 7.7. Research profiles of individual states, including output in different disciplines, areas of high output, growth or decline and extent of domestic and foreign collaboration are shown in Section 7.8

The Average Impact Factor of each state has been determined in each of the 12 disciplines as well as in all fields combined. These have been compared with the national averages for Impact Factor in each of these fields. These results are summarized in Sections 7.5 and 7.6. The change in productivity and IF between 1990 and 1994 have been indicated.


'.2 Scientific output of states per unit Population

When scaled for size differences by the population in each state, sharp differences merge (Figure 7.1c). The scaled value is a measure of science orientation in the region. The Union territories, Chandigarh, Delhi, Pondicherry and Goa and Andaman-Nicobar lave higher output per lakh population, Chandigarh leading with 43 papers, followed by Delhi with 14 papers and Pondicherry with 8 papers.

Among the larger states, Karnataka leads with close to 3 paper per lakh population, Maharashtra with 2.3 papers, and Tamil Nadu and West Bengal with 2 papers each.

Among the smaller states, Meghalaya has a higher per capita output compared to the arger states with an average of 4 papers per lakh persons.

As the major institutions where much of the scientific research is conducted are located n the metropolitan areas, a clearer picture would emerge if the distribution of scientific output over cities was mapped. This will be taken up in a future exercise.

National Mapping of Science

Basu & Nagpurl

7.3 Changes in State output in Major Disciplines

Even though national output of scientific publications has increased in all the disciplines except Agriculture, there is both growth and decline in disciplines at the state level. This may be indicative of either fluctuation or a shift in emphasis or quality. The output of the states in different disciplines in 1990 and 1994 are shown in table 7.1a,b and change in state output in different disciplines is shown in Table 7.1c. Graphs for each discipline showing the position of each state in terms of output and growth or decline in the discipline are displayed in Section 7.7.

From Table 7.1a, it may be seen that the *highest output* in Physics, Chemistry, Computers, Engineering, Biology and Medicine and from Maharashtra, W. Bengal, UP, Tamil Nadu, Karnataka and Delhi.

In Agriculture it is from Andhra pradesh, Karnataka, UP, W. Bengal, Delhi and Haryana.

The *maximum growth* has taken place in Physics $(342^{\circ} papers)$, followed by Biomedical Research (308) and Engineering (234). Tamil Nadu is growing in all areas except Agriculture, while Rajasthan and UP have declined in 7-8 out of 12 disciplines.

The *highest increase* has been in Physics from Maharashtra (109 papers), in Chemistry in Tamil Nadu (87)and Maharashtra (82), Physics in West Bengal (70), Biomedical Research in Delhi (63) and Karnataka (55), and Clinical medicine in Tamil Nadu (60), Engineering and Materials Science in Karnataka (49, 27) and Tamil Nadu (33, 16). Contributions in Multi disciplinary journals appears to have increased in Karnataka, Maharashtra and UP. Computers, a small field, appears to be growing in almost all the states, more significantly in West Bengal (18).

The *major decline* has been in Clinical medicine in Chandigarh (-52) and Maharashtra (-34), in Chemistry in Andhra (-45) and in UP (-32), in Agriculture in Haryana (-32) and UP (-32), in Physics in UP (-23), in Biology in West Bengal(-22) and UP (-21).

STATE	MAT	PHY	CHE	BIO	GEO	AGRI	MED	BMD	ENGG	COMP	MTL	MuL	тот	TOTAV_IF
AND		1	1	2	2		7		1				14 ⁻	0.587
APR	4	174	261	82	65	46	90	123	61	3	39	45	993 🗍	1.481
ARN		2							2				4	1.986
ASM	2	16	26	4	3	3	4	9	6		1	3	77	0.709
, 8IH	1	17	10	7	12	2	11	11	27	3	11	7	119	0.972
СНД	3	38	39	3	7	1	119	54	5			12	281	1.587
DEL	39	251	142	69	56	23	362	157	95	16	37	65	1312 💫	1.544
GOA	2	1	6	12	34		5	3	4			12	79	1.053
GW	2	90	107	10	66	6	53	21	16		6	15	392	1.268
HAR		23	78	25	9	21	28	16	15	2	3	9	229	0.866
нім	2	9	8	11	1	8	1	4	1		1	1	47	0.784
(1 [~] K ([17	6	4	9	2	16	6		,	4	4	68	0,877
KAR	17	276	223	36	31	49	127	165	134	^J 22	5 9	134	1275 5	1.467
KER	4	45	86	19	25	8	62	22	28		24	17	340	1.118
MAP	- 3	97	69	14	11	6	42	36	20	1	10	11	320	1.1
МАН	- 43 -	533	509	45	71 ·	11 *	269	142	144	13	45	79	1904 🕦	1.574
MAN		7	4		2	1	4	2				1	21	0.6
MEG		24	24	7	2	2		9				3	71	0. 99 9
MIZ		1					1						2	0.38
ORI	5	92	56	8	6	7	22	10	14		1	3	224	1.338
PON		3	10	6	4		34	5	1		1	1	65	1.689
_PNJ	2	27	30	16	5	32	22	29	7		1	2	173	0.959
RAJ	2	45	57	12	Э		35	8	10	2	5	7	186	1.203
SIK								1					1	0.517
TAM	23	227 .	239	55	22	14	213	94	127	13	66	` 51	1144 0)	1.147
TRI	ļ	1	2	2	1	1						1	8	0.59
UPR	26	226	322	107	88	33	234	148	187	11	33	86	1501 🔗	1,177
WBN	23	455	306	41	47	22	114	145	104	34	61	21	1373 😚	1.256
TOTAL	203	2700	2621	597	582	298	1875	1220	1009	120	408	590	12223	1,333

2

Table 7.1a : Publication Output for States in Different Disciplines SCI Data 1994

TATES	MATHS	PHYS	CHEM	810	EARTH	AGRI	MED	BIOMED	ENGG	COMP	MTL	MULTI	TOT	AVG_IF
APR	13	15 8	306	56	42	50	51	91	60		39	36	900	1.204
ARN	13	150	5	1	72	50	51	51	00			50	6	0.676
ASM		23	24	3	2	3	2	4	2		1	1	65	1.007
BIH		24	14	10	14	7	11	9	24	1	5	4	123	0.799
CHD	3	25	39	8	5	4	171	46	5	•	5	10	316	1.301
DEL	19	217	134	50	38	14	363	94	78	6	39	55	1107	1.323
GOA	1 ~	4	1	6	41	1	3	2	3	-		9	70	1.196
GUJ	5	56	82	14	34	9	36	20	2		12	13	283	1.203
HAR	1	24	70	20	6	53	24	17	9		1	7	232	0.792
нім		8	8	9	1	11	16	6	2		•	4	66	1.028
J&K		10	14	14	2	2	20	13	1			5	81	1.330
KAR	27	257	163	37	18	39	98	110	85	12	32	78	956	1.265
KER	2	49	70	24	15	13	48	12	15	1	26	25	300	0.955
MAP	1	45	65	12	9	4	28	21	7		2	8	202	0.893
MAH	4- 41	424	J 427 /	32 -	39	26	303	109	116	10	39	41	1607	1.553
MAN		19	4	2		1		2			1		29	0.786
MEG	1 1	24	29	12	2	1	1	1	1			3	75	1.199
MIZ			2									1	3	0.335
ORI	1	54	51	14	6	7	9	11	12		4	2	171	1.197
PON	1	5	10	5			29	6	1		1	1	59	0.663
PNJ	3	31	42	17	1	27	33	13	4		2	5	178	0.864
RAJ	3	52	81	16	6	7	31	5	20		3	10	234	1.007
TAM	11	216	152	37	10	21	153	54	94	9	50	34	841(1.217
TRI	1		1	2									4	0.550
UPR	16	249	354	128	95	65	248	131	156		42	57	1541	1.024
WBN	25	385	283	63	44	18	91	134	77	16	62	22	1220	1.262
TAL	175	2357	2431	592	430	383	1769	911	774	55	361	431	10669	1.2160

-

÷.

FIËLD1	MAT	PHYS	CHEM	BIO	GEO	AGRI	MED	BMD	ENGG	COMP	MTL	MUL
(AR	-10	21	60	-1	13	710	29	55	49	10	27	56
'AM	12	11	87	18	12	-7	60	40	33	4	16	17
HAN	- £	109	82	13	32	-15	-34	33	28	3	6	38
DEL	20 20	34	8	19	18	9	-1	63	17	10	-2	10
VBN	-2	70	23	-22	3	4	23	11	27	. 18	-1	-1
IAP	2	52	4	2	2	2	14	15	13	์ 1	8	3
in Tra	-3	34	25	-4	32	-3	17	1	14		-6	2
LPR	-9	18	-45	26	23	-4	39	32	- 1	3	0	9
DRI	4	38	5	-6	o	0	13	-1	2		-3	1
(ER	2	-4	16	-5	10	-5	14	10	13	-1	-2	-8
SM	2	-7	2	1	1	0	2	5	4		0	2
OA .	2	-3	5	6	-7	-1	2	1	1			3
ON	-1	-2	0	1	4		5	-1	0		0	0
RÍ	-1	1 -	1	0	1	1						1
1Z		1	-2				1					-1
RN		2.	-5	-1					2			
AR	-1	-1	8	5	3	-32	4	-1	6	2	2	2
IH	1 1	-7	-4	-3	-2	-5	0	2	3	2	6	3
EG	-1	o	-5	-5	0	1	-1	8	-1			0
NJ	-1	-4	-12	-1	4	5	-11	16	3		-1	-3
fAN		-12	0	-2	2	0	4	0			- 1	1
_ K		7	-8	-10	7	0	-4	-7	-1		4	-1
(M .,	1	1	0	2	0	-3	-15	-2	-1		1	-3
HD	0	13	0	-5	2	-3	-52	8	0			2
PR	10	-23	-32	-21	-7	-32	-14	17	31	11	-9	29
AJ	-1	-7	-24	-4	-3	-7	4	3	-10	2	2	-3
οτ	28	342	189	3	150	-85	99	308	234	65	47	159

7.4 Average Impact Factor of States (1994)

The average impacts are calculated and tabulated in Table 7.2a,b using 1994 IF values. States with average impact higher than the national average (1.33) are, Chandigarh (1.59), Delhi (1.54), Pondicherry (1.69), Maharashtra (1.57), Karnataka (1.47) Andhra (1.48), and Orissa (1.34).

The highest national averages for impact factors are in Medicine (1.917) (with seven states having an IF higher than 2), Physics (1.607) and Biomedical Research (1.576). States with higher than average impact in each of these areas are,

Medicine	Andhra (2.66), .Bihar (2.82), Delhi (1.91), Goa (2.66), Gujarat
	(2.23), Karnataka (2.34), Rajasthan (2.35)
Physics	Arunachal (3.23), Chandigarh (2.12), Karnataka (1.98),
	Maharashtra (1.92)
Biomedical	Goa (3.39), Delhi (1.85), Andhra (1.67),
The states with more	an average impact in all fields combined in 1994 are

Pondicherry, Chandigarh, Maharashtra, Delhi, Andhra, Karnataka and Orissa. The states with more than average impact in at least half the fields in 1994 are Andhra, Karnataka (10 areas), Maharashtra (9 areas), Delhi (6 areas), West Bengal (6 areas), closely followed by Bihar (5 areas).

STATE	MATHS	PHYS	CHEM	BIO	EARTH	AGRI	MED	BMD	ENGG	COMP	MTL	MULTI	τοτ
	<u>,</u>												
AND	0	0.569	2.277	1.106	0.371	0	0.324	0	0.152	0	0	0	0.587
APR	0.502	1.44	1.677	1.694	0.818	0.696	2.663	1.668	0.642	1.01	0.821	0.82	1.481
ARN	0	3.233	0	0	0	0	0	0	0.73 9	0	0	0	1.986
ASM	0.144	0.644	0.644	1.073	0.567	0.842	1.626	0.711	0.712	Đ	0.716	0.271	0.709
BíH	0.852	1.046	1.469	0.86	0.209	1.103	2.822	1.111	0.508	1.38	0.782	0.271	0.972
CHD	0.366	2.121	1.209	5.388	0.444	1.342	1.912	1.177	0.498	0	0	0,246	1.587
DEL	0.502	1.529	1.198	2.451	0.731	0.885	2.057	1.853	0.53	0.651	0.89	1,419	1.544
GOA	0.66^	0.395	0.809	0.678	1.165	0	2.655	3.39	0.542	0	0	0.271	1.053
GUJ	0.339	1.504	1.085	0.759	1.057	0.487	2.233	1.498	0.481	0	0.511	0.269	1.268
HAR	0	0.931	0.687	0.634	0.624	0.765	1.849	1.404	0.364	0.266	0.865	0.334	0.866
HIM	0.339	1.135	0.871	0.743	0.467	0.638	0	0.9	0.633	0	0.741	0.271	0.784
J_K	đ	1.053	0.361	1.098	0.44	0.324	1.067	1.401	0	C	0.775	0.494	0.877
KAR	0.457	1.975	1.512	1.183	0.89	0.736	2.335	1.962	0.655	0.84	1.014	0.623	1.467
KER	0.61	1.143	1.204	0.758	1.002	0.762	1.615	1.514	0.71	٥	0.79 9	0.271	1.118
MAP	0.54	1.388	1.013	1.877	0.492	0.548	1.02	1.364	0.391	1.803	0.645	0.271	1.100
МАН	0.529	1.924	1.514	1.176	0.821	0.644	1.972	2.011	0.694	0.905	0.763	1.234	1.574
MAN	0	0.452	0.569	0	0.602	1.002	0.678	0.989	0	0	Q	0.271	0.600
WEG	0	1.074	1.162	0.818	0.639	0.266	0	0.991	0	0	0	0.271	0.999
MIZ	0	0.76	0	0	0	0	0	0	0	0	0	0	0.380
ORI	0.447	1.896	0.862	1.134	1.077	0.711	1.546	1.032	0.618	0	0.357	0.26	1.338
PON	0	0.909	1.002	0.793	0.561	0	1.644	1.412	0.689	0	0.898	25.466	1.689
PNJ	1.576	1.08	0.472	1.761	1.827	0.618	1.297	1.018	0.429	0	0.66	0.271	0.959
RAJ	0.598	1.072	1.107	0.558	0.882	0	2.348	0.846	0.55	0.498	0.795	0.338	1.203
siK	0	0	0	D	0	0	0	0.517	0	0	0	0	0.517
ТАМ	0.51	. 1.404	1.121	0.998	0.601	0.356	1.712	1.236	0.57	0.891	0.593	0.717	1.14
TRI	0	0.76	. 0.293	0.893	1.232	0.087	0	0	0	0	0	0.271	0.59(
UPR	0.408	1.437	1.111	1.759	0.669	0.627	1.9	1.091	0.527	0.533	0.691	0.834	1.177
WBN	0.7	1.569	1.183	0.934	0.816	0.718	1.398	1.611	0.619	0.795	0.811	0.266	1.256
NATIONAL	0.523	1.607	1.262	1.432	0.812	0.683	1.917	1.576	0.591	0.797	0.786	0.814	1.333

Table7.2a : Average Impact Factor Of States In Different Disciplines : SCI Data 1994

STATES	maths	PHYS	CHEM	BIO	EARTH	AGRI	MED	BMD	ENGG	COMP	MTL	MULTI	TOT_AV
APR	0.434	1.214	1.343	0.952	0.892	0.814	1.585	1.460	0.770		0.733	1.591	1.204
ARN			0.720	0.457									0.676
ASM		0.965	1.132	0.676	1.356	1.009	0.533	1.049	1.035		0.716	0.271	1.007
BIH		1.096	0.675	0.552	0. 681	0.971	0.787	0.961	0.731	1.380	0.666	0.263	0.799
CHD	0.478	1.886	0.811	0.837	0.784	1.015	1.388	1.033	0.601			2.850	1.301
DEL	0.500	1.408	0.892	1.232	1.033	0.715	1.744	1.672	0.617	0.506	0.679	0.937	1.323
GOA		0.837	0.442	0.922	0.894	1.089	1.843	1.435	0.209			3.070	1.196
GUJ	0.539	1.494	0.959	0.842	1.437	0.790	1.270	1.287	0.326		0.534	2.245	1.203
HAR	0.359	1.079	0.881	0.763	1.027	0.777	0.714	0.606	0.327		1.072	0.271	0.792
HIM	0.388	1.060	2.486	0.644	0.563	0.672	0.947	1.127	1.132			0.291	1.028
J&K		2.425	1.006	0.884	0.459	0.626	1.897	1.180	0.258			0.271	1.330
KAR	0.561	1.705	1.244	0.709	0.727	0.688	1.593	1.892	0.607	1.028	0.806	0.436	1.266
KER	0.433	0.841	0.989	0.789	1.009	0.531	1.671	1.082	0.555	0.691	0.948	0.302	0.955
МАР	0.339	1.034	0.746	1.059	0.767	0.528	0.714	1.663	0.686		0.444	0.326	0.893
MAH	0.498	1.848	1.371	0.877	0.942	0.760	2.009	1.583	0.696	0.515	0.756	3.071	1.553
MAN		0.617	1.344	0.984		0.683		1.161			0.741		0.786
MEG	0.380	1:123	1.633	0.721	0.927	0.714	0.702	1.597	0.930			0.271	1.199
MIZ			0.368									0.271	0.335
ORI	0.610	1.711	0.752	0.583	0.713	0.520	3.182	1.497	0.620		0.908	0.507	1.197
PON	0.339	1.066	0.352	0.618			0.645	1.221	0.152		0.444	0.237	0.663
PNJ	0.685	1.200	0.630	0.796	2.847	0.716	1.026	1.010	0.498		1.013	0.264	0.864
ŔĄJ	0.429	1.285	0.809	0.888	0.734	0.601	1.905	0.990	0.523		0.7 09	0.267	1.007
TAM	0.367	1.301	1.079	0.892	0.758	0.596	2.294	1.214	0.597	0.714	0.658	0.270	1.217
1RI	0.610		0.355	0.617									0.550
UPR	0.553	1.238	0.846	0.800	0.828	0.705	1.490	1.162	0.589		0.695	1.606	1.024
WBN	0.546	1.513	1.123	0.809	0.806	0.615	1.952	1.556	0.590	0.635	0.723	1.886	1.262
TONAL	0.506	1.467	1.091	0.850	0.914	0.721	1.688	1.440	0.625	0.713	0.729	1.203	1.216

 Table 7.2b: Average Impact Factor Of States In Different Disciplines - SCI Data 1990

7.5 Performance of states with respect to National Averages

The performance of states may be compared with respect to quantity of output or quality of output (Impact factor). The smaller states may not produce as much as some of the larger states but their output may be of comparable quality.

The comparison shows that some states produce more than the national average and their quality is also higher than the national average. In Table 7.3 we have shown the states divided into four categories with reference to the national averages for productivity and impact, namely,

higher than average output and impact,

higher than average output but lower than average impact lower than average output but higher than average impact

lower than average output and impact

7.6 Performance of states in Different Disciplines

The performance of the states varies with discipline. While some of the larger states produce papers in almost all the areas of science, their quality need not be uniformly high. The smaller states may concentrate on only a few disciplines. The performance of states with respect to national averages for output and impact in each of the 12 disciplinary areas are shown by dividing them into 4 categories as explained in Section 7.5 for the years 1994 and 1990 (Fig. 7.2a,b).

199	ю	Holicua	Output	13: strated	
		Above Average		Below Average	
Factor	Above Average	Maharashtra West Bengal Delhi Kamataka	1	Jammu & Kashmir Chandigarh	IV
Impact	Below Average	Uttar Pradesh Tamil Nadu Andhra Pradesh	"	GUI, KER, MAP, HAR, ORI, RAJ, PINI, BIH, GOA, ASM, MEG, PON, MAN, TRI, ARN, MIZ, AND, SIK, HIM	

Table 7.3: Classification of States based on Output & Impact Factor 1990 and 1994

Without going into the actual figures of the Productivity and Impact Factor it is seen that **Maharashtra**, **Delhi**, and **Kamataka** have maintained an above average productivity and Impact Factor from 1990 to 1994. **West Bengal** has however, lost out in 1994 as its Impact Factor has gone below the national average in 1994. **Andhra Pradesh** on the other hand has crossed over the average line for IF.

Among the states with smaller output(below National Average), **Chandigarh** has maintained its IF above the National Average in both 1990 & 1994. The IFs of **Pondicherry, Arunachal Pradesh** and **Orissa** have gone past the national average since 1990. **J&K's** IF fell below the national average between 1990 & 1994.

- I both Output and Impact Factor above the National Average.
- II Ouput above the National Average but Impact Factor below the National Average

 III - below the National Averages in both Output and Impact Factor.
 IV- below the National Average in their Outputs but above National Average in Impact Factor

1994		Qutpu	nt in the second s	
	Above Average		Below Average	
Factor Ahova Averada	Maharashtra Delhi Kamataka Andhra Pradesh	-	Pondicherry Chandigarh Orissa Arunachal Pradesh	IV
Impact Below Average		11	GUI, KER, MAP, HAR, RAJ, PNJ, BIH, GOA, ASM, MEG, J&K, MAN, TRI, MIZ, HIM	

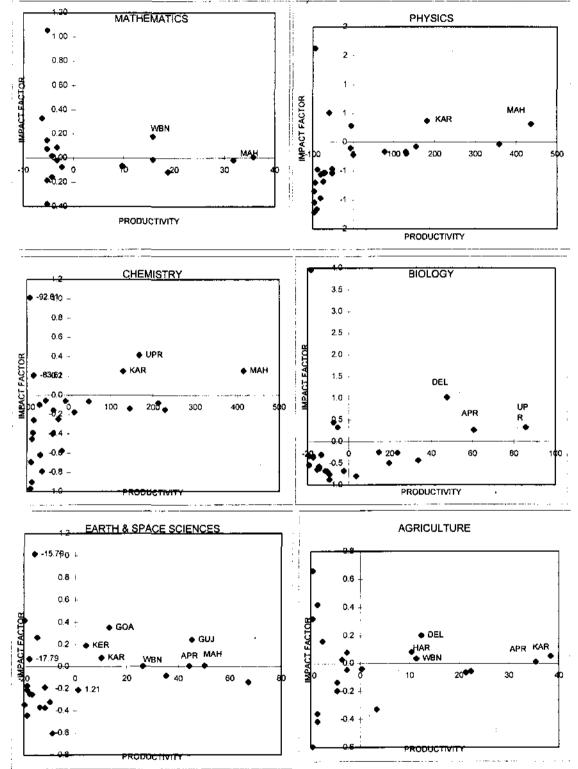


Fig 7.2 a Classification of States based on their Output and Impavt Factor - Comparison with the National Averages - 1994

The general triends for 1994 are almost the same as was for 1990. Maharashtra and Karnataka feature in the Quadrant I nine of the twelve disciplinary categories. Karnataka has shifted six in 1990 to nine in 1994 which is a noticeable jump. Eleven of the twenty eight states occur in Quadrant I for atleast one discipline.

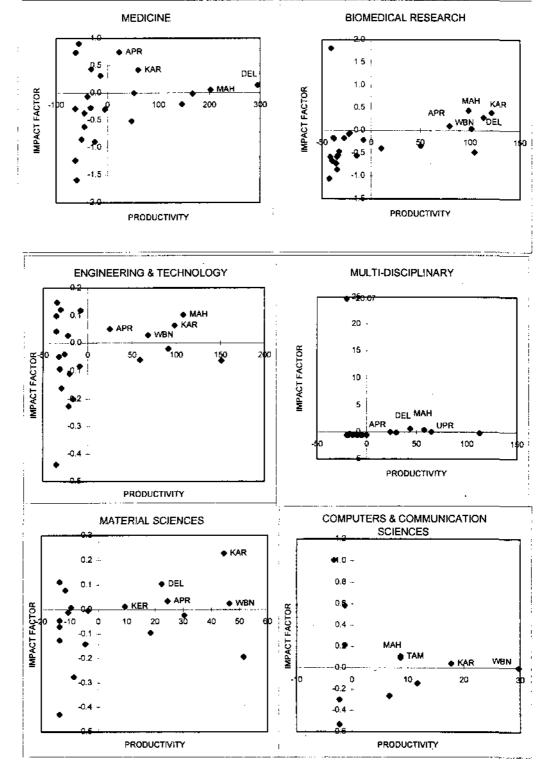


Fig 7.2 a Classification of States based on their Output and Impavt Factor - Comparison with the National Averages -

Five of this eleven occur only twice or less. Eigth of the eleven have shifts in their scores from 1990 but only Tamil Nadu has shown a negative shift. Goa is a new entrant in this club. 'West Bengal(+1), Karnataka(+3), Uttar Pradesh(+1), Delhi(+2) Andhra Pradesh(+2) and Kerala(+1) are the other states showing

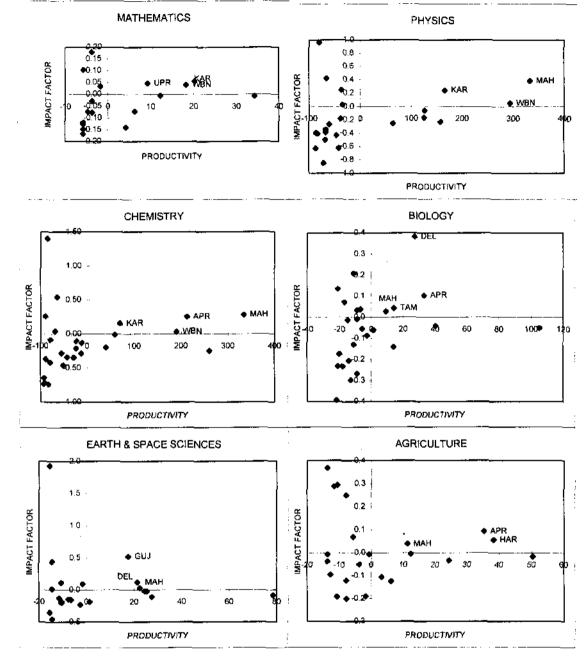
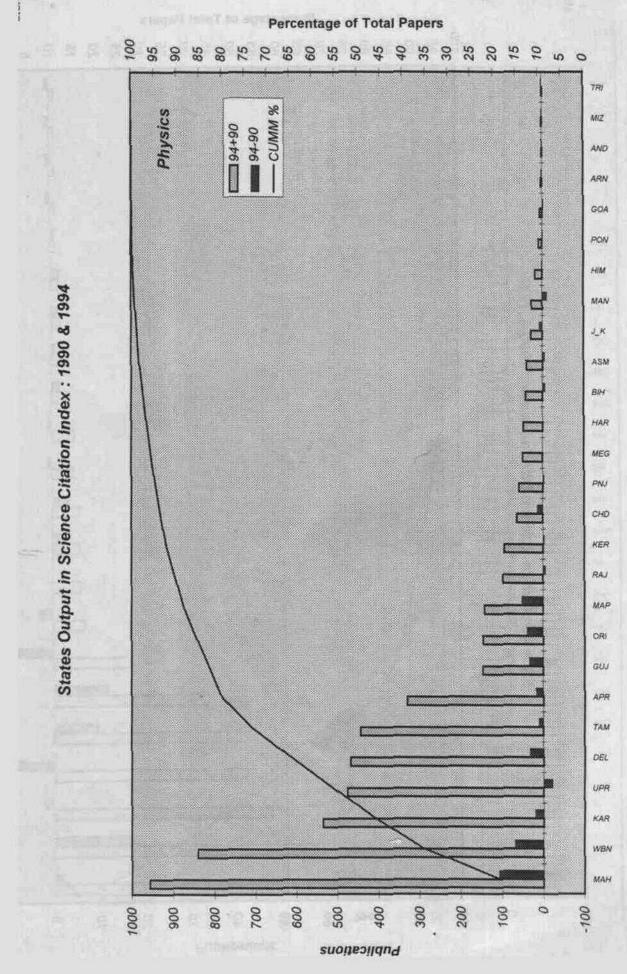
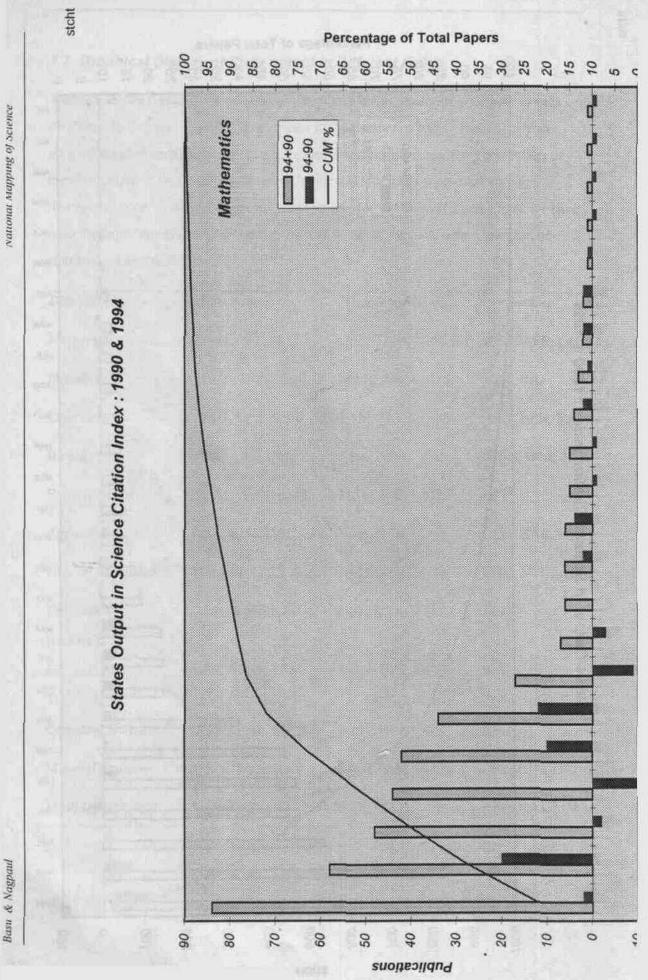


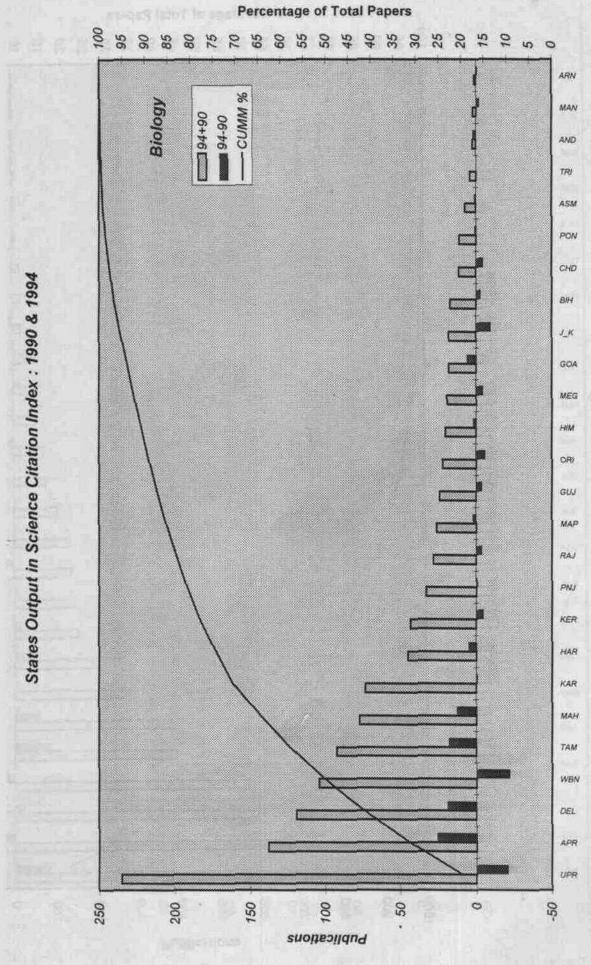
Fig 7.2b Classification of States based on their Output and Impavt Factor - Comparison with the National Averages - 1990

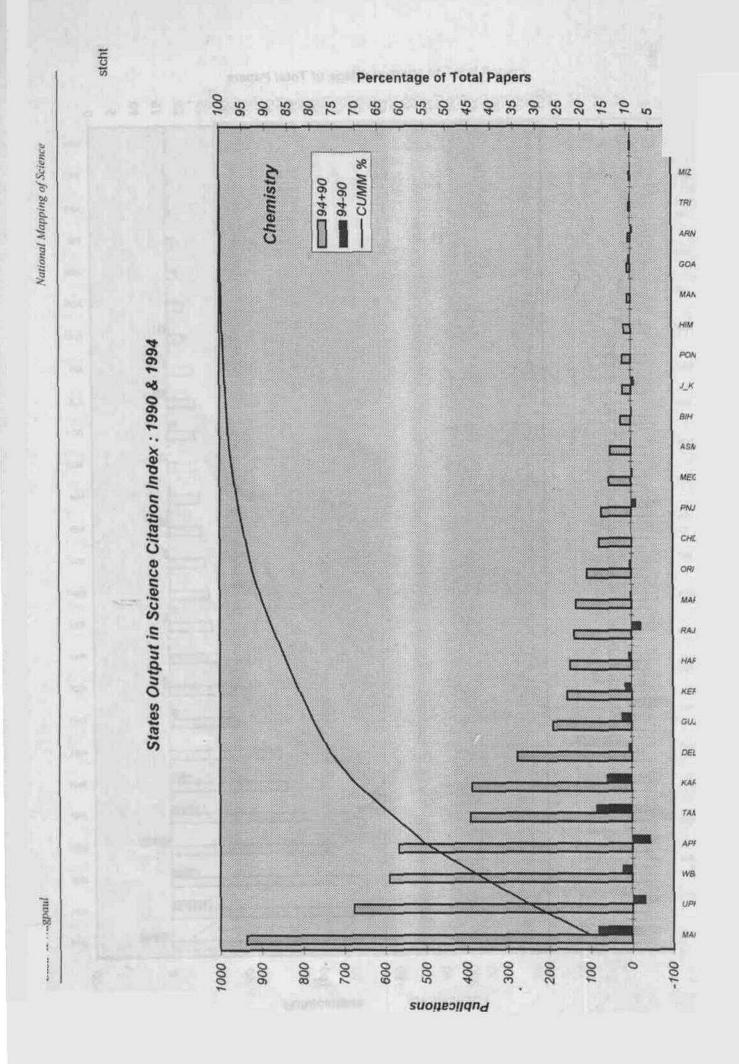
In almost all the disciplines the general trends are that most of the states, feature in either the Quadrant I (Contributions and Average IF above average) or in Quadrant II (both Contributions and Average IF below average). The number of states in the first Quadrant is usually less than five.

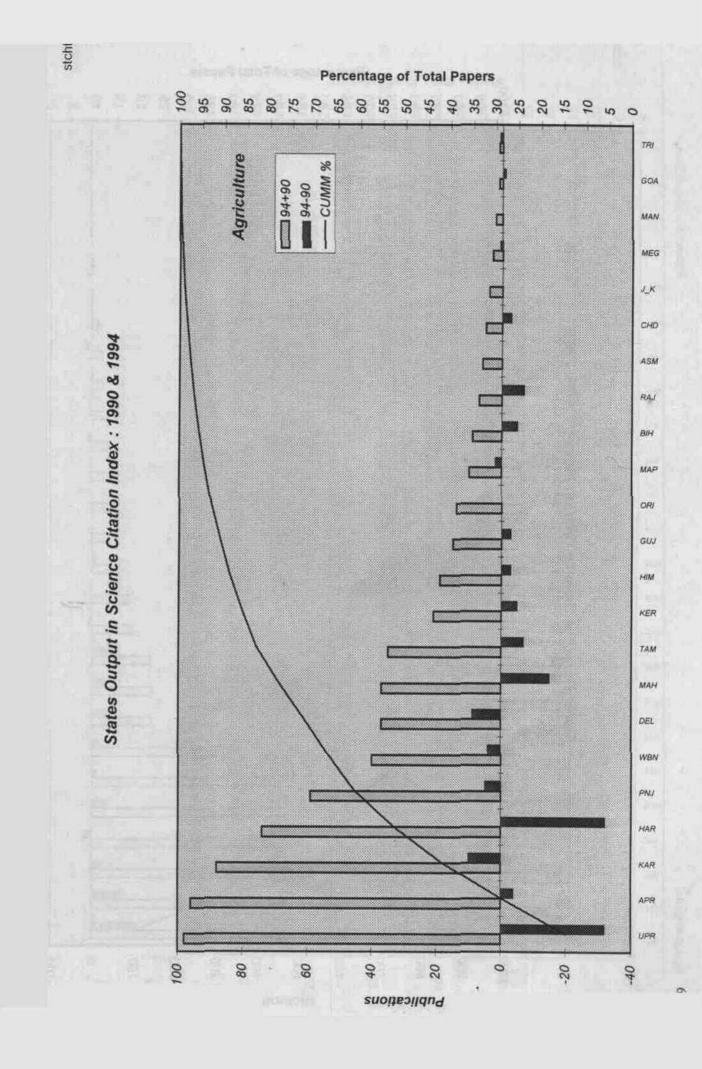


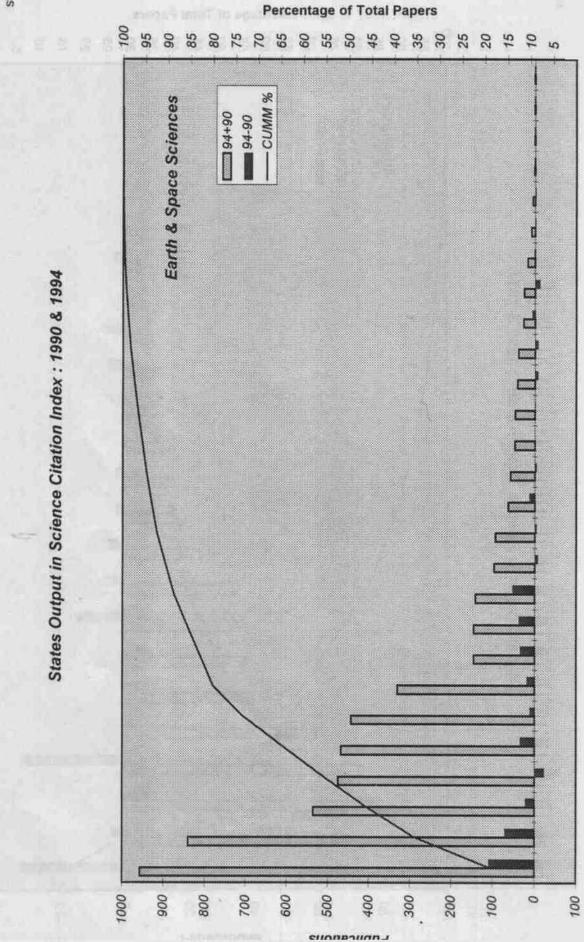

Fig 7.2b Classification of States based on their Output and Impavt Factor - Comparison with the National Avarages - 1990

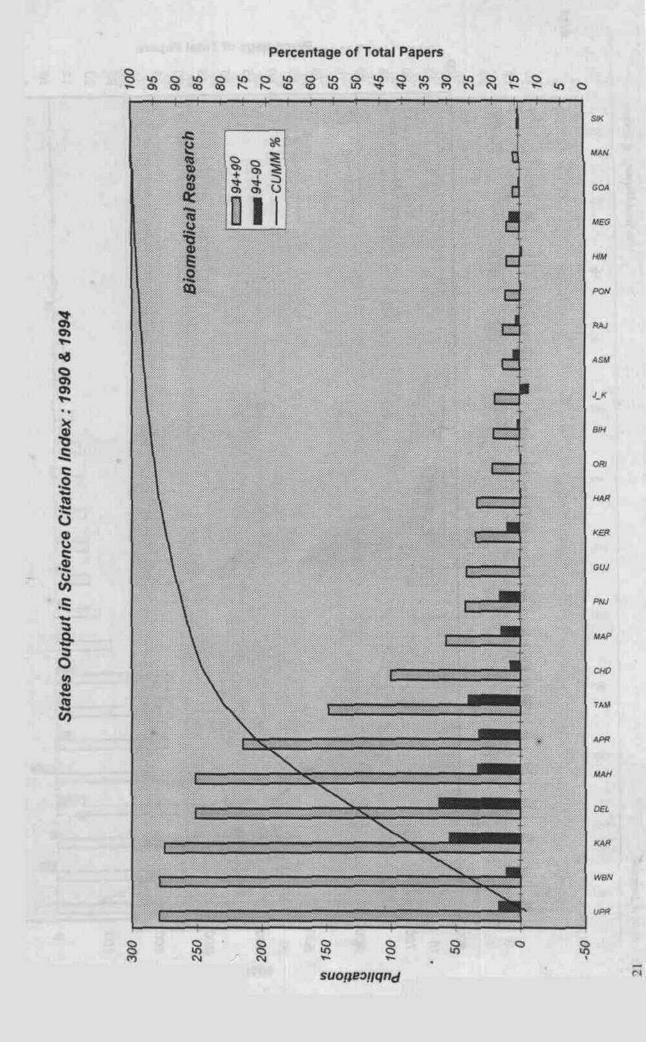

Maharashtra is in Quadrant I in nine of the twelve disciplinary categories. Karnataka, West Bengal, and Andhra Pradesh are next with a score of six each. Only ten of the twenty six states ever feature in the first Quadrant out of which three states occur only twice or thrice.

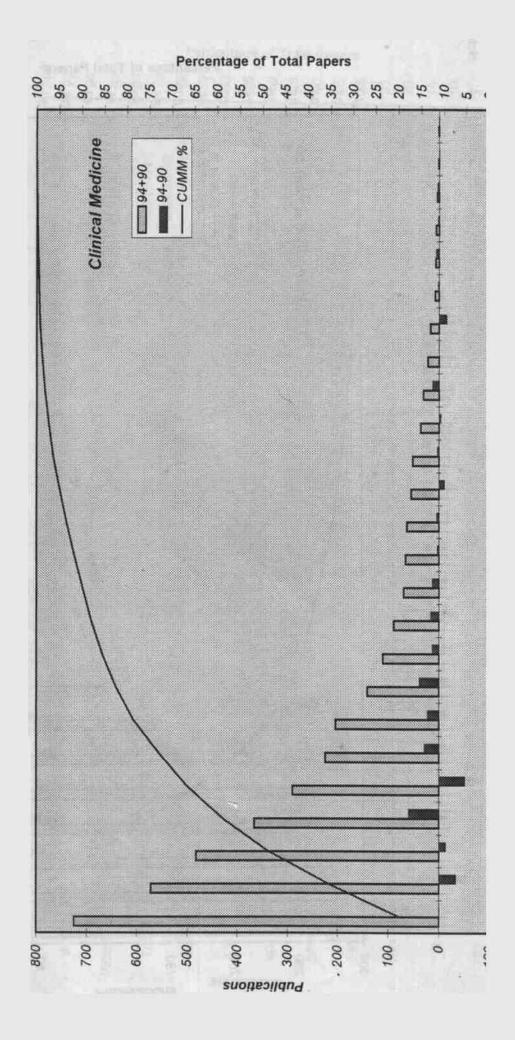

7.7 Graphical Display of State output in Different Fields

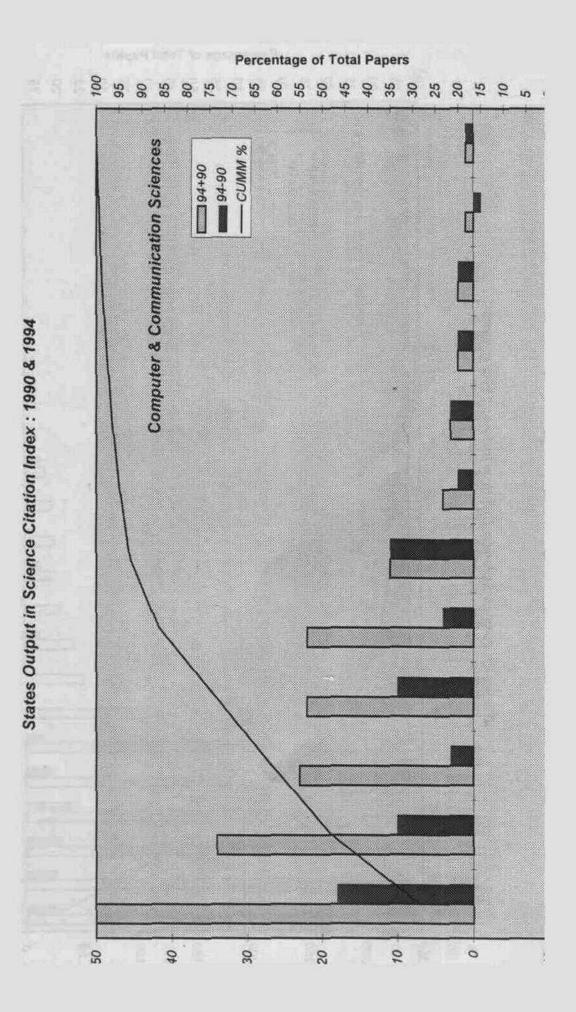

We have shown (ranked) the position of the state in terms of output separately in each discipline in a series of graphs. The change in the number of papers in the four year interval has also been indicated. The line graph indicates the cumulative percentage of the total output in that discipline covered by the top few states from a list arranged in descending order of output. In order to compensate for year to year fluctuations, we have used the cumulative output for the two years to compute the rank. The results can be summarised as follows:

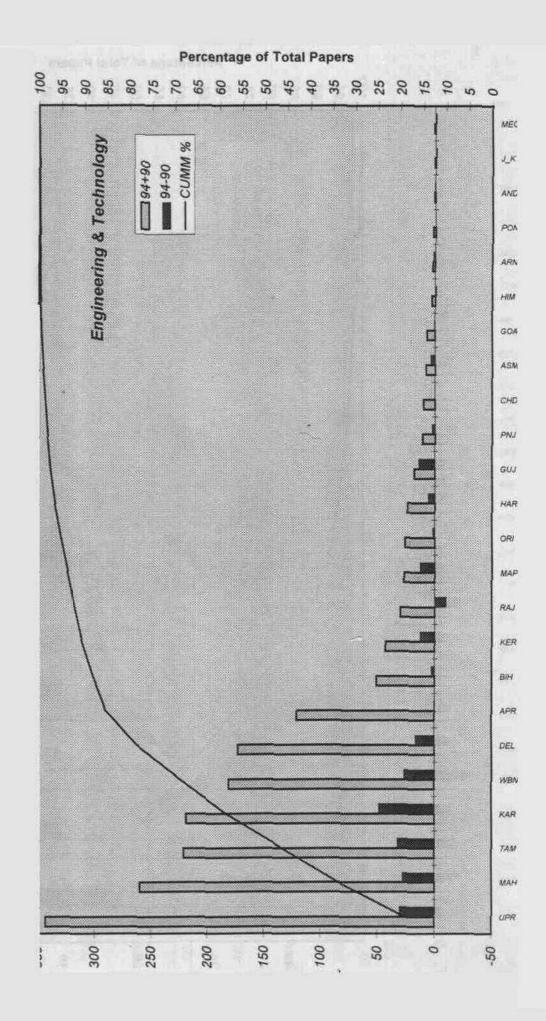

Discipline	High output	High Growth	Decline
Mathematics	MAH, DEL, WBN	DEL, TAM, UPR	KAR, APR, GUJ
Physics	MAH, WBN, KAR	MAH, WBN, MAP	UPR, RAJ
Chemistry	MAH, UPR, WBN	TAM, MAH, KAR	APR, UPR, RAJ
Biology	UPR, APR, DEL	APR, DEL, TAM	WBN, UPR, J&K
Earth & Space	MAH, WBN, KAR	MAH, WBN, MAP	UPR
Agriculture	URP, APR, KAR	KAR, DEL,	UPR, HAR, MAH
Clinical Medicine	DEL, MAH, UPR	TAM, APR, WBN	CHD, MAH, HIM
Biomedical	UPR, WBN, KAR	DEL, KAR, TAM	J&K
Research			
Engineering &	UPR, MAH, TAM	WBN, UPR, DEL	KER
Tech			
Computer Science	WBN, KAR, MAH	WBN, UPR, DEL	KER
Material Sciences	WBN, TAM, KAR	KAR, TAM, MAP	UPR, GUJ, ORI
Multi Disciplinary	KAR, UPR, DEL	KAR, MAH, DEL	KER, RAJ, PNJ

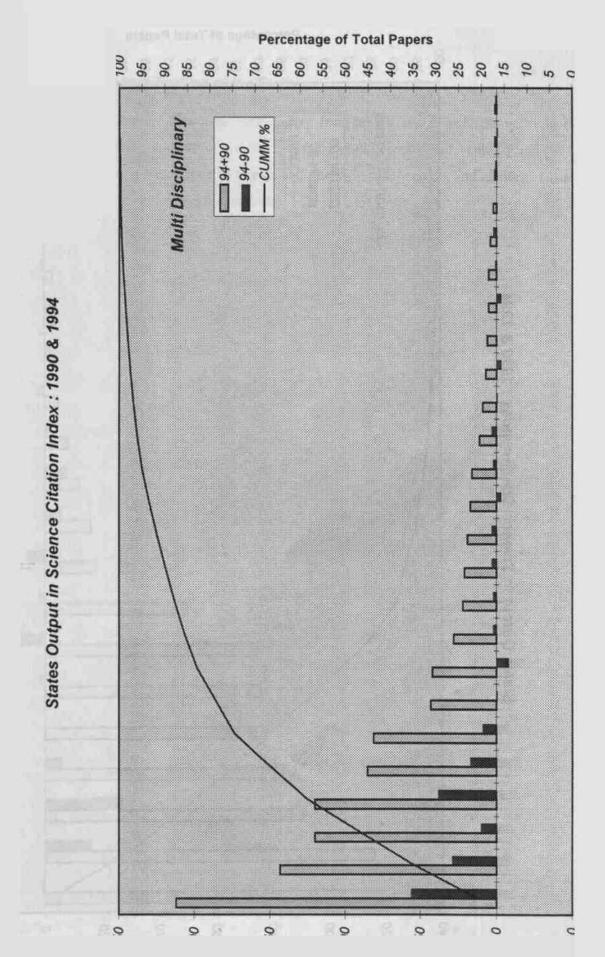


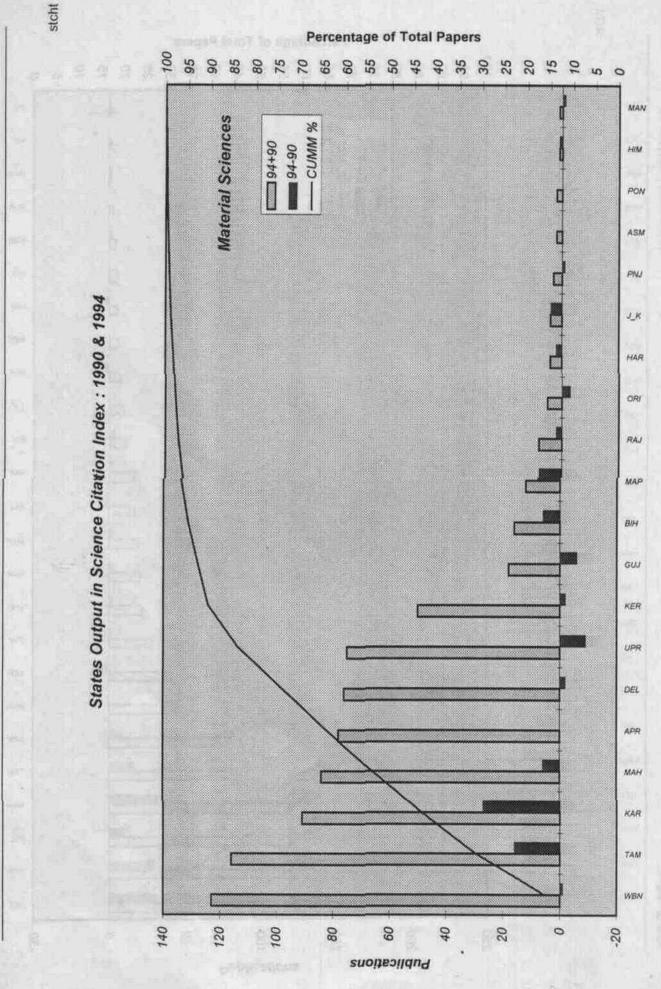



ŵ,






Basu & Nagpaul



7.8 Research Profiles of the States

Individual state profiles have been created from an analysis of publications from the states, featuring number of papers, average impact, activity and visibility indices in different disciplines; extent of foreign and interstate collaboration, and number of listed addresses (institutions) in the state, etc.

Andhra Pradesh		(Populat	ion: 6650800	8)
			1990	1994
No. of papers			900	993
National Rank			6	7
% of Total			8.44	8.13
Average Impact Factor			1. 2	1.48
Internationally co-authored	l papers		84 (9.3%)	162 (16.3%)
Interstate co-authored pap	ers		65 (7.2%)	132 (13.3%)
No. of collaborating states			19	17
No. of Institutional Address	ses			138
Publication in Major Disc	viplines:			
Disciplines	1990	1994	Avg_IF '94	Nat Avg_IF '94
Mathematics	13	4	0.50	0.52
Physics	156	174	1.44	1.61
Chemistry	306	261	1.68	1.26
Earth & Space Sciences	42	65	0.82	0.81
Biology	56	82	1.69	1.43
Agriculture	50	46	0.70	0.68
Biomedical Research	91	123	1.67	1.58
Material Science	39	39	0.82	0.79
Engg & Technology	60	61	0.64	0.59
Computer & Comm Sci	-	3	1.01	0.80
Clinical Medicine	51	90	2.66	1.92
Multi-Disciplinary	36	45	0.82	0.81
Total	900	993	1.48	1.33
Comparison with Nation	al Averages (A	ctivíty, V	isibility)	
Areas of High Activity	Growing Acti	ivity		Declining Activity
Agriculture	Biology			Maths
Biology	Agriculture	. .		Chemistry
Earth & Space Sciences	Comp & Com	m Sci		Engg & Technology
<u>High Visibility</u>	Growing <u>Visi</u>	bility		Declining Visibility
Biology	Biology			Maths
Agriculture	Clinical Medic	ine		Multi-Disciplinary
Chemistry	Comp & Com			Engg & Technology

Arunachal Pradesh	()	Populatio	n: 864558)	
			1990	1994
No. of papers			6	4
National Rank			26	25
% of Total			0.06	0.03
Average Impact Factor			0.68	1,99
Internationally co-authored p	apers		-	-
Interstate co-authored paper			1 (16.7%)	2 (50.0%)
No. of collaborating states	-		1	4
No. of Institutional Addresse	S		·	4
Publication in Major Discip	lines:			
Disciplines	1990	19 94	Avg_IF '94	Nat Avg_IF '94 '94'94
·····				
Mathematics	-	-	-	0.52
Physics	-	2	3.23	1.61
Chemistry	5	-	-	1.26
Earth & Space Sciences	-	-	-	0.81
Biology	1		-	1.43
Agriculture	-	-	-	0.68
Biomedical Research	-	•	-	1.58
Material Science	-	-	-	0.79
Engg & Technology	-	2	0.74	0.59
Computer & Comm Sci	-	-	-	0.80 1.92
Clinical Medicine	-	•	-	
Multi-Disciplinary Total	6	4	1.99	0.81 1.33
Comparison with National	Averages (Act	ivity, Visi	bility)	<u></u>
Areas of High Activity	<u>Growing A</u>	ctivity		Declining Activity
Engg & Technology	Engg & Tec			Agriculture
Physics	Physics			Biology
<u>High Visibility</u> Engg & Technology	<u>Growing Vi</u> Engg & Tec			<u>Declining Visibility</u> Agriculture
Physics	Physics			Biology

Andaman & Nicobar	(Poj	oulation.	: 280661)	
			1990	1994
No. of papers				14
National Rank				24
% of Total				
Average Impact Factor				0.59
Internationally co-authored papers				1
Interstate co-authored papers				2
No. of collaborating states			-	2
No. of Institutional Addresses				4
Publication in Major Disciplines:				
Disciplines	1990	1994	Avg_/F '94	Nat Avg_IF '94
······································				
Mathematics				0.52
Physics		1	0.57	1.61
Chemistry		1	2.28	1.26
Earth & Space Sciences		2	0.37	0.81
Biology		2	1.11	1.43
Agriculture				0.68
Biomedical Research				1.58
Material Science				0.79
Engg & Technology		1	0.15	0.59
Computer & Comm Sci		_		0.80
Clinical Medicine		7	0.32	1.92
Multi-Disciplinary				0.81
Total		14	0.59	1.33
Comparison with National Averag	ges (Activity, V	/isibility))	
Areas of High Activity G	rowing Activit	Ľ		Declining Activity
Hiah Visibility G	rowina Visibili	tv		Declining Visibility

state1

Publication Profile of Indian States

Assam		(Populat	2)	
			1990	1994
No. of papers			65	77
National Rank			18	21
% of Total			0.63	0.61
			1.01	0.71
Average Impact Factor	+			- · · ·
Internationally co-authored			4 (6.2%)	6 (7.8%)
Interstate co-authored par			5 (7.7%)	16 (20.8%)
No. of collaborating states			5	17
No. of Institutional Addres	ses			20
Publication in Major Dis	ciplines:			
Disciplines	1990	1994	Avg_IF '94	Nat Avg_lF '94
Moth a motion			0.14	0.50
Mathematics	-	2		0.52
Physics	23	16	0.64	1.61
Chemistry	24	26	0.64	1.26
Earth & Space Sciences	2	3	0.57	0.81
Biology	3	4	1.07	1.43
Agriculture	3	3	0.84	0.68
Biomedical Research	4	9	0.71	1.58
Material Science	1	1	0.72	0.79
Engg & Technology	2	6	0.71	0.59
Computer & Comm Sci	-	-	-	0.80
Clinical Medicine	2	4	1.63	1.92
Multi-Disciplinary	1	3	0.27	0.81
Total	65	77	0.7 1	1.33
Comparison with Nation	al Averages (A	ctivity, V	isibility)	
Areas of High Activity	Growing Acti	<u>ivity</u>		Declining Activity
Physics	Maths			Physics
Biology	Chemistry			Material Sciences
Material Sciences	Engg & Techn	nology		Biology
High Visibility	<u>Growing Visi</u>	bility		Declining Visibility
Biology	Agriculture			Physics
Physics	Engg & Techn	nology		Material Science
Material Science	Earth & Space		s	Biology
	- 1			

~

Bihar		(Populatio	n: 8637 44 65)
			4000	4004
			1990	1994
No. of papers			123	119
National Rank			16	16
% of Total			1.15	0.97
Average Impact Factor			0.8	0.97
Internationally co-authored p	apers		11 (8.9%)	12 (10.1%)
Interstate co-authored paper	S		30 (24.4%)	37 (31.1%)
No. of collaborating states			11	18
No. of Institutional Addresse	s			64
Publication in Major Discip	olines:			·····
Disciplines	1990	1994	Avg_IF '94	Nat Avg_IF '94
Mathematics	-	1	0.85	0.52
Physics	24	17	1.05	1.61
Chemistry	14	10	1.47	1.26
Earth & Space Sciences	14	12	0.21	0.81
Biology	10	7	0.86	1.43
Agriculture	7	2	1.10	0.68
Biomedical Research	9	11	1.11	1.58
Material Science	5	11	0.78	0.79
Engg & Technology	24	27	0.51	0.59
Computer & Comm Sci	1	3	1.38	0.80
Clinical Medicine	11	11	2.82	1.92
Multi-Disciplinary	4	7	0.27	0.81
Total	123	119	0.97	1.33
Comparison with National	Averages (Ac	tivitv. Visi	bility)	
Areas of High Activity	Growing A			Declining Activity
Engg & Technology	Earth & Sp		ces	Clinical Medicine
	Engg & Technology			Physics
Material Sciences		•		A
Material Sciences	Material Sc	ciences		Chemistry
Material Sciences Comp & Comm Sci	Material Sc			
Material Sciences Comp & Comm Sci <u>High Visibility</u>	Material Sc <u>Growing V</u>	/isibility		Declining Visibility
Material Sciences	Material Sc	<i>/isibility</i> omm Sci		Chemistry <u>Declining Visibility</u> Physics Clinical Medicine

132

Chandigarh					
			1990	1994	
No. of papers			316	281	
National Rank			8	11	
% of Total			2.96	2.3	
Average Impact Factor			1.3	1.59	
Internationally co-authored pape	ers		22 (7.0%)	36 (12.8%)	
Interstate co-authored papers			31 (9.8%)	49 (6.8%)	
No. of collaborating states			11	19	
Publication in Major Disciplin	95:		······	· · · · · · · · · · · · · · · · · · ·	
Disciplines	1990	1994	_Avg_IF '94	Nat Avg_IF '94	
Mathematics	3	3	0.37	0.52	
Physics	25	38	2.12	1.61	
Chemistry	39	39	1.21	1.26	
Earth & Space Sciences	5	7	0.44	0.81	
Biology	8	3	5.39	1.43	
Agriculture	4	1	1.34	0.68	
Biomedical Research	46	54	1,18	1.58	
Material Science	-	-	-	0.79	
Engg & Technology	5	5	0.50	0.59	
Computer & Comm Sci	-	-	-	0.80	
Clinical Medicine	171	119	1.91	1.92	
Multi-Disciplinary	10	12	0.25	0.81	
Total	316	281	1.59	1.33	
Comparison with National Ave	erages (Activit)	, Visibility)		
<u>Areas of High Activity</u>	Growing Activity		Declining Activity		
Engg & Technology	Material Scien		Clinical Medicine		
Material Sciences	Comp & Comr		Biomedical Research		
Comp & Comm Sci	Engg & Technology		Chemistry		
<u>High Visibility</u>	<u>Growing Visi</u>	<u>bility</u>	Declining Visi	billty	
Comp & Comm Sci	Comp & Comr		Clinical Medicir		
Material Sciences	Material Scien	ces	Multi-Disciplina	ry	
Engg & Technology	Engg & Techn	ology	Biomedical Res	search	
	× *				

Delhi		(Popula	tion: 9420644)	
			1990	1994
No. of papers			1107	1312
National Rank			4	4
% of Total			10.38	10.75
Average Impact Factor			1.32	1.54
Internationally co-authored papers Interstate co-authored papers No. of collaborating states No. of Institutional Addresses			110 (9.9%)	194 (14.8%)
			116 (10.5%)	191 (14.6%)
			19	22
				140
Publication in Major Dis	ciplines:			
Disciplines	1990	1994	Avg_IF '94	Nat Avg_IF '94
Mathematics	19	39	0.50	0.52
Physics	217	251	1,53	1.61
Chemistry	134	142	1.20	1.26
Earth & Space Sciences	38	56	0.73	0.81
Biology	50	69	2.45	1.43
Agriculture	14	23	0.89	0.68
Biomedical Research	94	157	1.85	1.58
Material Science	39	37	0.89	0.79
Engg & Technology	78	95	0.53	0.59
Computer & Comm Sci	6	16	0.65	0.80
Clinical Medicine	363	362	2.06	1.92
Multi-Disciplinary	55	65	1.42	0.81
Total	1107	1312	1.54	1.33
Comparison with Mation	al Augenera (A	athritin 1	/ieibilita)	· · · -
Comparison with Nation	ai Averayes (A	icavity, i	(Sibility)	
Areas of High Activity	Growing Act	tivity		Declining Activity
Clinical Medicine	Maths			Multi-Disciplinary
Maths	Agriculture			Material Sciences
Comp & Comm Sci	Biology			Clinical Medicine
<u>High Visibility</u>	Growing Vis	<u>ibility</u>		Declining Visibility
	KALLAS COLLECT			

Clinical Medicine Biology Multi-Disciplinary Growing Visibility Multi-Disciplinary Maths Biology Declining Visibility Clinical Medicine Engg & Technology Earth & Space Sciences

Goa	(Population : 1169793)			
			1990	1994
No. of papers			70	79
National Rank			19	17
% of Total			0.66	0.65
Average Impact Factor			1.2	1.05
Internationally co-authored papers			5 (7.1%)	17 (21.5%)
Interstate co-authored papers			13 (18.6%)	14 (17.7%)
No. of collaborating states			6	16
No. of Institutional Addresses				7
Publication in Major Disciplines				••••••••••••••••••••••••••••••••••••••
Disciplines	1990	1994	Avg_IF '94	Nat Avg_IF '94
Mathematics	_	2	0.67	0.52
Physics	4	1	0.40	1.61
Chemistry	1	6	0.81	1.26
Earth & Space Sciences	41	34	1.17	0.81
Biology	6	12	0.68	1.43
Agriculture	1	-	-	0.68
Biomedical Research	2	3	3.39	1.58
Material Science	-	-	-	0.79
Engg & Technology	3	4	0.54	0.59
Computer & Comm Sci	-	-	-	0.80
Clinical Medicine	3	5	2.66	1.92
Multi-Disciplinary	9	12	0.27	0.81
Total	70	79	1.05	1.33
Comparison with National Avera	ges (Ac	tivity, Visi	bility)	
	<u>'g /</u>	<u>Activity</u>		<u>Declining Activity</u> Earth & Space Sciences
	try			Agriculture Physics
	<u>g V</u>	/isibility		<i>Declining Visibility</i> Multi-Disciplinary
	•	ace Scienc I Research		Agriculture Physics

state	1

Gujarat		(Populati	ion : 41309582)	
			1990	1994
No. of papers			283	392
National Rank			10	8
% of Total			2.65	3.21
Average Impact Factor			1.2	1.27
Internationally co-authored pa	apers		33 (11.7%)	56 (14.3%)
Interstate co-authored papers	5		36	69
No. of collaborating states			11	19
No. of Institutional Addresses	;			70
Publication in Major Discip	lines:			
Disciplines	90		94 Avg_IF '94	Nat Avg_IF '94
Mathematics	5	2	0.34	0.52
Physics	56	90	1.50	1.61
Chemistry	82	107	1.09	1.26
Earth & Space Sciences	34	66	1.06	0.81
Biology	14	10	0.76	1.43
Agriculture	9	6	0.49	0.68
Biomedical Research	20	21	1.50	1.58
Material Science	12	6	0.51	0.79
Engg & Technology	2	16	0.48	0.59
Computer & Comm Sci	-	-	-	0.80
Clinical Medicine	36	53	2.23	1.92
Multi-Disciplinary	13	15	0.27	0.81
Total	283	392	1.27	1.33
Comparison with National	Averages (Activ		li412)	<u> </u>
Companson with National	Averages Activ	<u>ity, visibi</u>		· · · · · · · · · · · · · · · · · · ·
Areas of High Activity	Growing Ac	<u>ctivity</u>	Declining Act	tivity
Earth & Space Sciences	Maths		Earth & Space Sciences	
Material Sciences	Material Sci	ences	Engg & Technology	
Chemistry				
·				
High Visibility	<u>Growing Vi</u>		<u>Declining Vis</u>	
·	<u>Growing Vi</u> Multi-Discipl Maths		<u>Declining Vis</u> Clinical Medic Engg & Techn	ine

Haryana		(Populat	tion : 1646364	8)
			1990	1994
No. of papers			232	229
National Rank			12	12
% of Total			2.17	1.88
Average Impact Factor			0.79	0.87
Internationally co-authore	d papers		25 (10.8%)	16 (7.0%)
Interstate co-authored par	• •		25 (10.8%)	38 (16.6%)
No. of collaborating states			12	13
No. of Institutional Addres				27
Publication in Major Dis	ciplines:			
Disciplines	1990	1994	Avg_IF '94	Nat Avg_IF '94
Mathematics	1	-	-	0.52
Physics	24	23	0.93	1.61
Chemistry	70	78	0.69	1.26
Earth & Space Sciences	6	9	0.62	0.81
Biology	20	25	0.63	1.43
Agriculture	53	21	0.77	0.68
Biomedical Research	17	16	1.40	1.58
Material Science	1	3	0.87	0.79
Engg & Technology	9	15	0.36	0.59
Computer & Comm Sci	-	2	0.27	0.80
Clinical Medicine	24	28	1.85	1.92
Multi-Disciplinary	7	9	0.33	0.81
Total	232	229	0.87	1.33
Comparison with Nation	al Averages (A	ctivity. V	/lsibility)	
Areas of High Activity	Growing Act			Declining Activity
Agriculture	Comp & Com	m Sci		Agriculture
Biology	Biology			Maths
Chemistry	Material Scier	nces		Biomedical Research
<u>High Visibility</u>	<u>Growing Vis</u>	<u>ibillty</u>		Declining Visibility
Agriculture	Clinical Medic	sine		Agriculture
Biology	Comp & Com	m Sci		Biology
Chemistry	Material Scier	nces		Chemistry

Himachal Pradesh	(Populatio	n: 5170877)	
			1990	1994
No. of papers			66	47
National Rank			20	22
% of Total			0.62	0.38
Average Impact Factor			1.03	0.78
Internationally co-authored	papers		3 (4.5%)	5 (10.6%)
Interstate co-authored pape	ers		7 (10.6%)	12 (25.5%)
No. of collaborating states			6	7
No. of Institutional Address	BS			17
Publication in Major Disc	iplines:			
Disciplines	1990	1994	Avg_IF '94	Nat Avg_iF '94
Mathematics	1	2	0.34	0.52
Physics	8	9	1.14	1.61
Chemistry	8	8	0.87	1.26
Earth & Space Sciences	1	1	0.47	0.81
Biology	9	11	0.74	1.43
Agriculture	11	8	0.64	0.68
Biomedical Research	6	4	0.90	1.58
Material Science	0	1	0.74	0.79
Engg & Technology	2	1	0.63	0.59
Computer & Comm Sci	-	-	-	0.80
Clinical Medicine	16	1	-	1.92
Multi-Disciplinary	4	1	0.27	0.81
Total	66	47	0.78	1.33
Comparison with Nationa	l Averages (Act	tivity, Visi	bility)	
Comparison with Nationa		<u> </u>	bility)	
Areas of High Activity	Growing A	<u> </u>	bility)	Declining Activity
<u>Areas of High Activity</u> Agriculture	<u>Growing A</u> Biology	<u> </u>	bility)	Clinical Medicine
Areas of High Activity Agriculture Biology	<u>Growing A</u> Biology Agriculture	<u> </u>	bility)	Clinical Medicine Multi-Disciplinary
Areas of High Activity	<u>Growing A</u> Biology	<u> </u>	bility)	Clinical Medicine
<u>Areas of High Activity</u> Agriculture Biology Maths	<u>Growing A</u> Biology Agriculture Maths	<u>ctivity</u>	bility)	Clinical Medicine Multi-Disciplinary Biomedical Research
<u>Areas of High Activity</u> Agriculture Biology Maths <u>High Visibility</u>	<u>Growing A</u> Biology Agriculture Maths <u>Growing Vi</u>	<u>ctivity</u>	bility)	Clinical Medicine Multi-Disciplinary Biomedical Research Declining Visibility
Areas of High Activity Agriculture Biology	<u>Growing A</u> Biology Agriculture Maths	<u>ctivity</u>	bility)	Clinical Medicine Multi-Disciplinary Biomedical Research

stale1

Jammu & Kashmir	(Population : 7718700)	
	1990	1994
No. of papers	81	68
National Rank	17	20
% of Total	0.76	0.56
Verage Impact Factor	1.33	0.88
nternationally co-authored papers	14 (17.3%)	17 (25.0%)
nterstate co-authored papers	13 (16.0%)	23 (33.8%)
lo. of collaborating states	7	17
lo. of Institutional Addresses		21

Publication in Major Disciplines:

Disciplines	£	90	94 Avg_lF '94	Nat Avg_IF '94
Mathematics	-	-	-	0.52
Physics	10	17	1.05	1.61
Chemistry	14	6	0.36	1.26
Earth & Space Sciences	2	9	0.44	0.81
Biology	14	4	1.10	1.43
Agriculture	2	2	0.32	0.68
Biomedical Research	13	6	1.40	1.58
Material Science	-	4	0.78	0.79
Engg & Technology	1	-	-	0.59
Computer & Comm Sci	-	-	-	0.80
Clinical Medicine	20	16	1.07	1.92
Multi-Disciplinary	5	4	0.49	0.81
Total	81.00	68.00	0.88	1.33

Comparison with National Averages (Activity, Visibility)

<u>Areas of High Activity</u>	<u>Growing Activity</u>	<u>Declining Activity</u>
Earth & Space Sciences	Earth & Space Sciences	Biology
Material Sciences	Material Sciences	Biomedical Research
Clinical Medicine	Physics	Chemistry
<u>High Visibility</u>	<u>Growing Visibility</u>	<u>Declining Visibility</u>
Material Sciences	Material Sciences	Biology
Earth & Space Sciences	Earth & Space Sciences	Chemistry
Clinical Medicine	Multi-Disciplinary	Clinical Medicine

slate 1

Karnataka	((Populat	ion : 4497720	1)
	_		1990	1994
No. of papers			956	1275
National Rank			5	5
% of Total			8.96	10.44
Average Impact Factor			1.27	1.47
Internationally co-authored	1 papers		139 (14.5%)	193 (51.1%)
Interstate co-authored par	bers		78 (8.2%)	158 (12.4%)
No. of collaborating states	4		14	19
No. of Institutional Addres				144
Publication in Major Dis	ciplines:			
Disciplines	1990	1994	Avg_IF '94	Nat Avg_lF '94
Mathematics	27	17	0.46	0.52
Physics	257	278	1.98	1.61
Chemistry	163	223	1.51	1.26
Earth & Space Sciences	18	31	0.89	0.81
Biology	37	36	1.18	1.43
Agriculture	39	49	0.74	0.68
Biomedical Research	110	165	1.96	1.58
Material Science	32	59	1.01	0.79
Engg & Technology	85	134	0.66	0.59
Computer & Comm Sci	12	22	0.84	0.80
Clinical Medicine	98	127	2.34	1.92
Multi-Disciplinary	78	134	0.62	0.81
Total	956	1275	1.47	1.33
Comparison with Nation	al Averages (Ad	ctivity, V	(isibility)	····
Areas of High Activity	<u>Growing Acti</u>	<u>vity</u>		Declining Activity
Multi-Disciplinary Comp & Comm Sci	Agriculture Material Scien	000		Maths
Agriculture	Multi-Disciplina			Comp & Comm Sci Biology
	waa-orscipiina	αι γ		noiogy
<u>High Visibility</u> Comp & Comm Sci Material Sciences	<u>Growing Visil</u> Multi-Disciplina Material Scien	ary		<u>Declining Visibility</u> Comp & Comm Sci Maths

Kerala		Populatic	n: 290 9851 8	Ŋ
			1990	1994
No. of papers			300	340
National Rank			9	9
% of Total			2.81	2.79
Average Impact Factor			0.96	1.12
Internationally co-authored	bapers		26 (8.7%)	37 (10.9%)
Interstate co-authored pape	•		31 (10.3%)	54 (15.9%)
No. of collaborating states			12	17
No. of Institutional Addresse	5			66
Publication in Major Disci	olines:			
Disciplines	1990	1994	Avg_IF '94	Nat Avg_IF '94
Mathematics	2	4	0.61	0.52
Physics	49	45	. 1.14	1.61
Chemistry	70	86	1.20	1.26
Earth & Space Sciences	15	25	1.00	0.81
Biology	24	19	0.76	1.43
Agriculture	13	8	0.76	0.68
Biomedical Research	12	22	1.51	1.58
Material Science	26	24	0.80	0.79
Engg & Technology	15	28	0.71	0.59
Computer & Comm Sci	1	-	-	0.80
Clinical Medicine	48	62	1.62	1.92
Multi-Disciplinary	25	17	0.27	0.81
man-Disciplinary			4.40	4.22
and the second	300	340	1.12	1.33
Total Comparison with National <u>Areas of High Activity</u> Material Sciences		vity, Visi		<i>Declining Activity</i> Multi-Disciplinary
Total Comparison with National Areas of High Activity	Averages (Acti Growing Ac	vity, Visi stivity	bility)	Declining Activity
Total Comparison with National <u>Areas of High Activity</u> Material Sciences	Averages (Acti <u>Growing Ac</u> Maths	vity, Visi ctivity ce Scienc	bility)	<i>Declining Activity</i> Multi-Disciplinary

Maharashtra	(Pe	opulation	: 78937187)	
			1990	1994
No. of papers			1607	1904
National Rank			1	1
% of Total			15.06	15.6
Average Impact Factor			1.55	1.57
Internationally co-authored pape	ers		183 (11.4%)	309 (16.2%)
Interstate co-authored papers			115 (7.2%)	204 (10.7%)
No. of collaborating states			10	13
No. of Institutional Addresses				262
Publication in Major Disciplin	es:			·
Disciplin <u>e</u> s	1990		Avg_IF '94	Nat Avg_IF '94
Mathematics	41	43	• • • • •	0.52
Physics .	424	533		1.61
Chemistry	427	509		1.26
Earth & Space Sciences	39	71		0.81
Biology	32	45		1.43
Agriculture	26	11		0. 68
Biomedical Research	109	142	-	1.58
Material Science	39	45		0.79
Engg & Technology	116	144	• • • •	0.59
Computer & Comm Sci	10	13	-	0.80
Clinical Medicine	303	269		1.92
Multi-Disciplinary	41	79		0.81
Total Comparison with National Ave	1607 erages (Activity,	1904 Visibility,	1.57	1.33
<u>Areas of High Activity</u> Maths Physics Chemistry	Growing Activ Multi-Disciplinat Earth & Space S Biology	<u>ity</u> ry	<u>Declining Acti</u> Comp & Comm	
-			,	bllity

Manipur	(Population : 1837149)	
	1990	1994
lo. of papers	29	21
lational Rank	23	23
6 of Total	0.27	0.17
werage Impact Factor	0.79	0.6
nternationally co-authored papers	2 (6.9%)	4 (19.0%)
nterstate co-authored papers	3 (10.3%)	11 (52.4%)
lo. of collaborating states	16	18
lo. of Institutional Addresses		15

Publication in Major Disciplines:

Discíplines	1990	19 94	Avg_IF '94	Nat Avg_IF '94 '94'94
Vathematics	-	-	-	0.52
Physics	19	7	0.45	1.61
Chemistry	4	4	0.57	1.26
Earth & Space Sciences	-	2	0.60	0.81
Biology	2	-	-	1.43
Agriculture	1	1	1.00	0.68
Biomedical Research	2	2	0.99	1.58
Material Science	1	-	-	0.79
Engg & Technology	-	-	-	0.59
Computer & Comm Sci	-	-	-	0.80
Clinical Medicine	-	4	0.68	1.92
Vtulti-Disciplinary	-	1	0.27	0.81
Total	29	21	0.60	1.33

Comparison with National Averages (Activity, Visibility)

<u>Areas of High Activity</u>	<u>Growing Activity</u>	<u>Declining Activity</u>
Earth & Space Sciences	Earth & Space Sciences	Physics
Agriculture	Clinical Medicine	Biology
^P hysics	Agriculture	Material Sciences
High Visibility	<u>Growing Visibility</u>	<u>Declining Visibility</u>
Agriculture	Agriculture	Biology
Earth & Space Sciences	Earth & Space Sciences	Material Sciences
Biomedical Research	Clinical Medicine	Physics

Madhya Pradesh	(P	opulati	on: 66181000))
			1990	1994
No. of papers			202	320
National Rank			13	10
% of Total			1.89	2.62
Average Impact Factor			0.86	1.1
Internationally co-authored p	apers		13 (6.4%)	29 (9.1%)
Interstate co-authored paper	,		29 (14.4%)	70 (21.9%)
No. of collaborating states			4	4
No. of Institutional Addresse	S			76
Publication in Major Discip	olines:		·····	
Disciplines	90	94	Avg_IF '94	Nat Avg_IF '94
Mathematics	1	3		0.52
Physics	45	97	1.39	1.61
Chemistry	65	69	1.01	1.26
Earth & Space Sciences	9	11	0.49	0.81
Biology	12	14	1.88	1.43
Agriculture	4	6	0.55	0.68
Biomedical Research	21	36	1.36	1.58
Material Science	2	10		0,79
Engg & Technology	7	20		0.59
Computer & Comm Sci	-	1	1.80	0.80
Clinical Medicine	28	42	1.02	1.92
Multi-Disciplinary	8	11	0.27	0.81
Total	202	320	1.10	1.33
Comparison with National	Averages (Activ	vity, Vis	ibility)	
Areas of High Activity	Growing Ac	tivit <u>v</u>		Declining Activity
Physics	Material Scie	nces		Chemistry
Biomedical Research	Physics			Earth & Space Sciences
Chemistry	Comp & Con	nm Sci		Multi-Disciplinary
				: Deelleise Visibiller
<u>High Visibility</u> Physics	<u>Growing Vis</u> Comp & Com			<u>Declining Visibility</u> Biomedical Research
Physics	Comp & Con	nm Sci		Biomedical Research
		nm Sci		

state1

Meghalaya	(Population : 1774778)	
	1990	1994
No. of papers	75	71
National Rank	18	19
% of Total	0.7	0.58
Average Impact Factor	1.2	1
nternationally co-authored papers	5 (6.7%)	13 (18.3%)
nterstate co-authored papers	6 (8.0%)	9 (12.7%)
No. of collaborating states	3	6
No. of Institutional Addresses		11

Publication in Major Disciplines:

Disciplines	90	94 A	vg_IF '94	Nat Avg_/F '94
Mathematics	1	-	- .	0.52
Physics	24	24	1.07	1.61
Chemistry	29	24	1.16	1.26
Earth & Space Sciences	2	2	0.64	0.81
Biology	12	7	0.82	1.43
Agriculture	1	2	0.27	0.68
Biomedical Research	1	9	0.99	1.58
Material Science	-	-	-	0.79
Engg & Technology	1	-	-	0.59
Computer & Comm Sci	-	-	-	0.80
Clinical Medicine	1	-	-	1.92
Multi-Disciplinary	3	3	0.27	0.81
Total	75	71	1.00	1.33

Comparison with National Averages (Activity, Visibility)

Areas of High Activity	Growing Activity	De
Biology	Biomedical Research	Bic
Chemistry	Agriculture	Ma
Physics	Physics	En
High Visibility	Growing Visibility	De
Chemistry	Biomedical Research	Bic
Biology	Physics	Ch
Physics	Agriculture	Ma

Declining Activity Biology Maths Engg & Technology

<u>Declining Visibility</u> Biology Chemistry Maths

990 1994 7 10 26 27 02 0.02 34 0.38 - 1 (10.0%) 4.3%) 1 (10.0%) 1 2
26 27 02 0.02 34 0.38 - 1 (10.0%) 4.3%) 1 (10.0%)
02 0.02 34 0.38 - 1 (10.0%) 4.3%) 1 (10.0%)
34 0.38 - 1 (10.0%) 4.3%) 1 (10.0%)
- 1 (10.0%) 4.3%) 1 (10.0%)
4.3%) 1 (10.0%)
4.3%) 1 (10.0%)
1 2
2
- 0.52
76 1.61
- 1.26
- 0.81
- 1.43
- 0.68
- 1.58
- 0.79
- 0.59
- 0.80
- 1.92
- 0.81
38 1.33
/)
<u>Declining Activity</u>

state 1

Orissa	(Populatio	on : 31659736	5)
			1990	1994
No. of papers			171	224
National Rank			15	13
% of Total			1.6	1.83
Average Impact Factor			1.2	1.34
Internationally co-authored	papers		22 (12.9%)	17 (7.6%)
Interstate co-authored pape			25 (14.6%)	44 (19.6%)
No. of collaborating states			7	18
No. of Institutional Addresse	s		52	
Publication in Major Disci	olines:			
Disciplines	1990	1994	Avg_IF '94	Nat Avg_IF '94
Mathematics	1	5	0.45	0.52
Physics	54	92	1.90	1.61
Chemistry	51	56	0.86	1.26
Earth & Space Sciences	6	6	1.08	0.81
Biology	14	8	1.13	1.43
Agriculture	7	7	0.71	0.68
Biomedical Research	11	10	1.03	1.58
Material Science	4	1	0.36	0.79
Engg & Technology	12	14	0.62	0.59
Computer & Comm Sci	-	-	-	0.80
Clinical Medicine	9	22	1.55	1.92
	2	3	C.26	0.81
Multi-Disciplinary				
	171	224	1.34	1.33
Multi-Disciplinary Total Comparison with National	171			1.33
Total Comparison with National Areas of High Activity	171 Averages (Act <u>Growing A</u>	tivity, Visi		Declining Activity
Total Comparison with National Areas of High Activity Physics	171 Averages (Act <u>Growing A</u> Maths	tivity, Visi		<u>Declining Activity</u> Biology
Total Comparison with National Areas of High Activity Physics Maths	171 Averages (Act Growing A Maths Physics	tivity, Visi ctivity		Declining Activity Biology Material Sciences
Total Comparison with National <u>Areas of High Activity</u> Physics Maths	171 Averages (Act <u>Growing A</u> Maths	tivity, Visi ctivity		<u>Declining Activity</u> Biology
Total	171 Averages (Act Growing A Maths Physics	tivity, Visi <u>ctívíty</u> dicine		Declining Activity Biology Material Sciences
Total Comparison with National <u>Areas of High Activity</u> Physics Maths Agriculture	171 Averages (Act Growing A Maths Physics Clinical Med	tivity, Visi <u>ctívíty</u> dicine		<u>Declining Activity</u> Biology Material Sciences Biomedical Research
Total Comparison with National <u>Areas of High Activity</u> Physics Maths Agriculture <u>High Visibility</u>	171 Averages (Act Growing A Maths Physics Clinical Med Growing Vi	tivity, Visi <u>ctívíty</u> dicine		Declining Activity Biology Material Sciences Biomedical Research

stale1

Punjab	(Po	opulation	: 20281969)	
	-		1990	1994
No. of papers			178	173
National Rank			14	15
% of Total			1.67	1.42
Average Impact Factor			0.86	0.96
Internationally co-authored paper	rs		12 (6.7%)	10 (5.8%)
Interstate co-authored papers			21 (11.8%)	33 (19.1%)
No. of collaborating states			5	16
No. of Institutional Addresses				46
Publication in Major Discipline	s:			
Disciplines	1990	1994		Nat Avg_IF '94
Mathematics	3	2	1.58	0.52
Physics	31	27		1.61
Chemistry	42	30		1.26
Earth & Space Sciences	1	5	1.83	0.81
Biology	17	16		1.43
Agriculture	27	32		0.68
Biomedical Research	13	29	1.02	1.58
Material Science	2	1	0.66	0.79
Engg & Technology	4	7	0.43	0.59
Computer & Comm Sci	-	-	-	0.80
Clinical Medicine	33	22	1.30	1.92
Multi-Disciplinary	5	2	0.27	0.81
Total Comparison with National Ave	178	173 Visihility	0.96	1.33
	iagus (Acama)	<u> </u>	<u>, </u>	<u> </u>
Areas of High Activity	Growing Activi	ity	Declining Act	ivity
Agriculture	Agriculture		Multi-Disciplina	ягу
Biology	Biomedical Res			
Biomedical Research	Earth & Space S	Sciences		
<u>High Visibility</u> Agriculture	<u>Growing Visibi</u> Agriculture		<u>Declining Visi</u> Material Scienc	
Biology Maths	Earth & Space S	Sciences		

Pondicherry		(Populat	ion: 807785)		
			1990	1994	
No. of papers			59	65	
National Rank			22	21	
% of Total			0.55	0.53	
Average Impact Factor			0.66	1.6 9	
Internationally co-authore	d papers		4 (6.8%)	13 (20.0%)	
Interstate co-authored pay	pers		9 (15.3%)	14 (21.5%)	
No. of collaborating states	;		7	11	
No. of Institutional Addres	ses			10	
Publication in Major Dis	ciplines:		······································		
Disciplines	1990	1994	Avg_IF '94	Nat Avg_IF '94	
Mathematics	1	-	-	0.52	
Physics	5	3	0.91	1.61	
Chemistry	10	10	1.00	1.26	
Earth & Space Sciences	-	4	0.56	0.81	
Biology	5	6	0.79	1.43	
Agriculture	-	-	-	0.68	
Biomedical Research	6	5	1.41	1.58	
Material Science	1	1	0.90	0.79	
Engg & Technology	1	1	0.69	0.59	
Computer & Comm Sci	-	-	-	0.80	
Clinical Medicine	29	34	1.64	1.92	
Multi-Disciplinary	1	1	25.47	0.81	
Total	59	65	1.69	1.33	
Comparison with Nation	al Averages (Ad	ctivity, V	(Isibility)		
	Growing Acti	vity		Declining Activity	
<u>Areas of High Activity</u> Clinical Medicine Biology	Earth & Space Biology	Science	S	Maths Biomedical Research	
Clinical Medicine	•		:5		
Clinical Medicine Biology	Biology	ine <u>bility</u> ary			

Rajasthan	(P	Populatio	n: 44005990))
			1990	1994
No. of papers			234	186
National Rank			11	14
% of Total			2.19	1.52
Average Impact Factor			1.01	1.2
Internationally co-authored	papers		24 (10.3%)	27 (14.5%)
Interstate co-authored pape	• •		24 (10.3%)	35 (18.8%)
No. of collaborating states			9	17
No. of Institutional Address	es			62
Publication in Major Disc	plines:			,
Disciplines	1990	1994	Avg_/F '94	Nat Avg_IF '94
Mathematics	3	2	0.60	0.52
Physics	52	45	1.07	1.61
Chemistry	81	57	1.11	1.26
Earth & Space Sciences	6	3	0.88	0.81
Biology	16	12	0.56	1.43
Agriculture	7	-	-	0.68
Biomedical Research	5	8	0.85	1.58
Material Science	3	5	0.80	0.79
Engg & Technology	20	10	0.55	0.59
Computer & Comm Sci	0	2	0.50	0.80
Clinical Medicine	31	35	2.35	1.92
Multi-Disciplinary	10	7	0.34	0.81
	234	186	1.20	1.33
Total	234	,00		
	-			
Total Comparison with National Areas of High Activity	l Averages (Acti <u>Growing</u> Ac	vity, Visi tivity		Declining Activity
Total Comparison with National Areas of High Activity Chemistry	<i>Averages (Acti</i> <u>Growing Ac</u> Comp & Con	<i>vity, Visi</i> <u>tivity</u> nm Sci		Agriculture
Total Comparison with National Areas of High Activity Chemistry Biology	<i>Averages (Acti</i> Growing Ac Comp & Con Material Scie	<i>vity, Visi</i> <u>tivity</u> nm Sci ences		
Total	<i>Averages (Acti</i> <u>Growing Ac</u> Comp & Con	<i>vity, Visi</i> <u>tivity</u> nm Sci ences		Agriculture
Total Comparison with National <u>Areas of High Activity</u> Chemistry Biology	<i>Averages (Acti</i> Growing Ac Comp & Con Material Scie	<i>vity, Visi</i> <u>tivity</u> nm Sci ences		Agriculture
Total Comparison with National Areas of High Activity Chemistry Biology Clinical Medicine	<i>Averages (Acti</i> <u>Growing Ac</u> Comp & Con Material Scie Clinical Medi	<i>tivity, Visi</i> <u>tivity</u> nm Sci ences cine		Agriculture Engg & Technology
Total Comparison with National Areas of High Activity Chemistry Biology Clinical Medicine High Visibility	<u>Growing Ac</u> Comp & Con Material Scie Clinical Medi	<i>tivity, Visi</i> <u>tivity</u> nm Sci ences cine sibility		Agriculture Engg & Technology Declining Visibility
Total Comparison with National <u>Areas of High Activity</u> Chemistry Biology	<i>Averages (Acti</i> <u>Growing Ac</u> Comp & Con Material Scie Clinical Medi	<u>tivity</u> , <u>Visi</u> <u>tivity</u> nm Sci ences cine <u>sibility</u> nm Sci		Agriculture Engg & Technology

stalo 1

Sikkim		(Populati	on : 406457)	· · · · · · · · · · · · · · · · · · ·
			1990	1994
No. of papers				
National Rank				
% of Total				
Average Impact Factor				
Internationally co-authored pap	ers			
Interstate co-authored papers				
No. of collaborating states				1
No. of Institutional Addresses				2
Publication in Major Disciplin	ies:	<u>.</u>	······································	
Disciplines	1990	1994	Avg_lF '94	Nat Avg_lF '94
Mathematics				0.52
Physics				1.61
Chemistry				1.26
Earth & Space Sciences				0.81
Biology				1.43
Agriculture				0.68
Biomedical Research			0.52	1.58
Material Science				0.79
Engg & Technology				0.59
Computer & Comm Sci				0.80
Clinical Medicine				1.92
Multidisciplinary	<u></u>	i		0.81
			0.52	1.33
<u></u>		14	<u> </u>	
Comparison with National Av	erages (Activ	ny, visioli	<i>(y)</i>	
Areas of High Activity	<u>Growing Ac</u>	<u>ctivity</u>	<u>Declining Acti</u>	vity
				`
High Visibility	<u>Growing Vi</u>	sibility	<u>Declining</u> Visil	bility
				

stale1

1990 4 25 0.04 0.55 1 (25.0%) - 94 Avg_/F '94 - 0.76 0.29 1.23 0.89 0.09 -	1994 8 24 0.07 0.59 2 (25.0%) 4 (50.0%) 4 6 Nat Avg_IF '94 0.52 1.61 1.26 0.81 1.43 0.68 1.58
25 0.04 0.55 1 (25.0%) - - 94 Avg_/F '94 - 0.76 0.29 1.23 0.89	24 0.07 0.59 2 (25.0%) 4 (50.0%) 4 6 <i>Nat Avg_IF '94</i> 0.52 1.61 1.26 0.81 1.43 0.68
0.04 0.55 1 (25.0%) - 94 Avg_IF '94 - 0.76 0.29 1.23 0.89	0.07 0.59 2 (25.0%) 4 (50.0%) 4 6 Nat Avg_/F '94 0.52 1.61 1.26 0.81 1.43 0.68
0.55 1 (25.0%) - 94 Avg_/F '94 - 0.76 0.29 1.23 0.89	0.59 2 (25.0%) 4 (50.0%) 4 6 <u>Nat Avg_IF '94</u> 0.52 1.61 1.26 0.81 1.43 0.68
1 (25.0%) - 94 Avg_IF '94 - 0.76 0.29 1.23 0.89	2 (25.0%) 4 (50.0%) 4 6 <i>Nat Avg_IF '94</i> 0.52 1.61 1.26 0.81 1.43 0.68
94 Avg_IF '94 0.76 0.29 1.23 0.89	4 (50.0%) 4 6 Nat Avg_IF '94 0.52 1.61 1.26 0.81 1.43 0.68
94 Avg_IF '94 0.76 0.29 1.23 0.89	4 (50.0%) 4 6 Nat Avg_IF '94 0.52 1.61 1.26 0.81 1.43 0.68
- 0.76 0.29 1.23 0.89	4 6 <i>Nat Avg_IF '94</i> 0.52 1.61 1.26 0.81 1.43 0.68
- 0.76 0.29 1.23 0.89	Nat Avg_IF '94 0.52 1.61 1.26 0.81 1.43 0.68
- 0.76 0.29 1.23 0.89	0.52 1.61 1.26 0.81 1.43 0.68
- 0.76 0.29 1.23 0.89	0.52 1.61 1.26 0.81 1.43 0.68
0.29 1.23 0.89	1.61 1.26 0.81 1.43 0.68
0.29 1.23 0.89	1.26 0.81 1.43 0.68
1.23 0.89	0.81 1.43 0.68
0.89	1. 4 3 0.68
	0.68
0.09	
-	1.58
_	
-	0.79
-	0.59
-	0.80
-	1.92
0.27	0.81
8 0.59	1.33
visibility)	Declining Activity
	8 0.59 /isibility)

Tamil Nadu		(Populat	tion : 55 <mark>85894</mark>	6)
			1990	1994
No. of papers			841	1144
National Rank			7	6
% of Total			7.88	9.37
Average Impact Factor			1.22	1.15
Internationally co-authored	papers		104 (12.4%)	118 (10.3%)
Interstate co-authored pap	• •		79 (9.4%)	134 (11.7%)
No. of collaborating states			11	20
No. of Institutional Address				186
Publication in Major Disc	ciplines:			
Disciplines	1990	1994	Avg_IF '94	Nat Avg_iF '94
Mathematics	11	23	0.51	0.52
Physics	216	227	1.404	1.61
Chemistry	152	239	1.121	1.26
Earth & Space Sciences	10	22	0.601	0.81
Biology	37	55	0.998	1.43
Agriculture	21	14	0.356	0.68
Biomedical Research	54	94	1.236	1.58
Material Science	50	66	0.593	0.79
Engg & Technology	94	127	0.57	0.59
Computer & Comm Sci	9	13	0.891	0.80
Clinical Medicine	153	213	1.712	1.92
Multi-Disciplinary <i>Total</i>	<u>34</u> 841	51 1144	0.717 1.15	0.81
Comparison with Nation	al Averages (A	ctivity, V	'isibility)	
<u>Areas of High Activity</u> Material Sciences Engg & Technology	<u>Growing Acti</u> Maths Chemistry	i <u>vity</u>		<u>Declining Activity</u> Comp & Comm Sci Physics
Clinical Medicine Maths	Biology			Agriculture
High Visibility	Growing Visi	<u>bility</u>		Declining Visibility
<u>High Visibility</u> Material Sciences Comp & Comm Sci	<u>Growing Visi</u> Maths Multi-Disciplina			Declining Visibility Comp & Comm Sci

Publication Profile	le of Indian States
---------------------	---------------------

...

1994 1501 2
2
12.3
1.18
199 (13.3%)
212 (14.1%)
24
190
Nat Avg_IF '94
0.52
1.61
1.26
0.81
1.43
0.68
1.58
0.79
0.59
0.80
1.92
0.81
1,33
<u>ctivity</u> ce Sciences
-

state1

West Bengal		(Popula	ation : 67982732)	
			1990	1994
No. of papers			1220	1373
National Rank			3	3
% of Total			11.44	11,25
Average Impact Factor			1.26	1.26
Internationally co-authored	d papers		107 (8.77%)	152 (11.1%)
Interstate co-authored par			83 (6.8%)	129 9.4%)
No. of collaborating states			15	26
No. of Institutional Addres				181
Publication in Major Dis	ciplines:			······································
Disciplines	1990	1994	Avg_IF '94	Nat Avg_IF '94
Mothematica		23	0.70	0.52
Mathematics				0.52
Physics	385			1.61
Chemistry	283	306		1.26
Earth & Space Sciences	44	47		0.81
Biology	63	41		1.43
Agriculture	18	22		0.68
Biomedical Research	134			1.58
Material Science	62	61	-	0.79
Engg & Technology	77	104		0.59
Computer & Comm Sci	16	34		0.80
Clinical Medicine	91	114		1.92
Multi-Disciplinary	22	21	·····	0.81
Total	1220	1373	1.26	1.33
Comparison with Nation	al Averages (A	ctivity,	Visibility)	<u> </u>
······································				
Areas of High Activity	<u>Growing Act</u>	<u>ivity</u>	Declining Activit	K
Comp & Comm Sci	Agriculture		Biology	
Physics			Biomedical Resea	rch
Material Sciences			Maths	
				:
<u>High Visibility</u>	Growing Vis	ibility	Declining Visibili	ity
Comp & Comm Sci	Comp & Com		Multi-Disciplinary	
Material Sciences	Agriculture		Biology	
Physics	v			
Maths				
· -				

8 Scientific Output of Institutions

There were more than 17,000 addresses located in India in the SCI database for the years 1990 and 1994, of which 98.8 percent were institutional addresses and 0.2 percent were residential or private/addresses. The institutional output was highly skewed, a few major institutions contributing a large percentage of the output. It may be said that the activities of these institutions constitute the core of Indian science.

As the unit of analysis gets smaller down to the institutional level, the question of data reliability and fluctuation, becomes more acute. The interpretation of institutional productivity therefore needs to made with greater care. In this study no attempt has been made to adjust for differences in size between institutions.

On the following pages we have shown the top 20 institutions in 1994, within in each of twelve disciplines within our data (Table 8.1a). It may be seen that this simple procedure picks out the top institutions that contribute not less than 1-2 percent of the literature in that discipline. This is fairly comprehensive and separates out the institutions with higher output from those with less output. In terms of actual output however, this procedure applies a cutoff at different levels of productivity in different areas, e.g., 40 papers in Physics and 3 papers in Mathematics.

The average impact factor of the papers contributed by a given institution in a given discipline are also shown in Table 8.1a. The top 10 institutions with the highest average impact factors in a given area are highlighted. Institutions which do not have sufficient output to be included in the top twenty within an area, but have high impact, fail to be identified.

Table 8.1a Number of Publications of Top 20 Indian Institutions in Different Disciplines(1994)

MATHE	EMATICS	MAX IF = 1.22		~	
S.No	INSTITUTE	aty	NO.	(Cumm %	AVG. IF
1	INDIAN STATISTICAL INSTITUTE	CALCUTTA	J31	J 16.40%	0.65
2	TATA INSTITUTE OF FUNDAMENTAL RESEARCH	BOMBAY	27	14.29%	0.53
3	DELHIUNIVERSITY	NEW#DELHI	16	8.47%	0.47
4	INDIAN INSTITUTE OF SCIENCE	BANGALORE	12	6.35%	0.41
5	INDIAN INSTITUTE OF TECHNOLOGY (MADRAS)	MADRAS	9	4.76%	0.65
6	INDIAN INSTITUTE OF TECHNOLOGY (KANPUR)	KANPUR	8	4.23%	0.48
7	BANARAS HINDU UNIVERSITY	VARANASI	6	3.17%	0.43
8	INDIAN INSTITUTE OF TECHNOLOGY (DELHI)	NEW-DELHI	5	2.65%	0.43
9	INDIAN INSTITUTE OF TECHNOLOGY (KHARAGPUR)	KHARAGPUR	4	2.1 2%	0.57
10	INDIAN INSTITUTE OF TECHNOLOGY (BOMBAY)	BOMBAY	4	212%	0.46
11	VISVA BHARTI (SANTINIKETAM)	SANTINIKETAN	4	2.1 2%	0.61
12	POONA UNIVERSITY	POONA	4	2.12%	0.72
13	SPIC SCIENCE FOUNDATION	MADRAS	3	1.59%	0.36
14	INDIAN INSTITUTE OF MANAGEMENT CALCUTTA	CALCUTTA	3	1.59%	1.22
15	ST ALBERTS COLLEGE	COCHIN	3	1.59%	0.61
16	REGIONAL ENGINEERING COLLEGE	ROURKELA	3	1.59%	0.49
17	PANJAB UNIVERSITY	CHANDIGARH	3	1.59%	0.42
18	MADRAS UNIVERSITY	MADRAS	3	1. 59%	0.52
19	JAMA MEIA ISLAMA	NEW-DELH	3	1.59%	0.34
20	COCHIN UNIVERSITY OF SCIENCE & TECHNOLOGY	COCHIN	3	1. 59%	0. 6 1
	TOTAL	·	154	81.48%	

PHYSIC	3	MAXIF=24			
S.No	INSTITUTE	ατγ	NO.	Çumm %	AVG. IF
1	TATA INSTITUTE OF FUNDAMENTAL RESEARCH	BOMBAY	J 255	10.46%	2.19
2	INDIAN INSTITUTE OF SCIENCE	BANGALORE	204	8.37%	2.40
3	BHABHA ATOMIC RESEARCH CENTRE	BOMBAY	149	6.11%	1.76
4	JADAVPUR UNIVERSITY	CALCUTTA	95	3.90%	1.40
5	INDIAN ASSOC FOR THE CULTIVATION OF SCI.	CALCUTTA	87	3.57%	1.54
6	NATIONAL PHYSICAL LABORATORY	NEW-DELHI	79	3.24%	1.60
7	INDIAN INSTITUTE OF TECHNOLOGY (BOMBAY)	BOMBAY	76	3.12%	216
8	INDIAN INSTITUTE OF TECHNOLOGY (MADRAS)	MADRAS	73	2.99%	1.19
9	HYDERABAD UNIVERSITY	HYDERABAD	72	295%	2 <i>0</i> 0
10	INDIAN INSTITUTE OF TECHNOLOGY (DELHI)	NEW-DELH	71	291%	1.24
11	SAHA INSTITUTE OF NUCLEAR PHYSICS	CALCUTTA	71	291%	2.06
12	DELHI UNIVERSITY	NEW-DELHI	69	2.83%	1.67
13	INSTITUTE OF PHYSICS	BHUBANESWAR	69	2.83%	1.93
14	INDIAN INSTITUTE OF TECHNOLOGY (KANPUR)	KANPUR	63	2.58%	1.82
15	BANARAS HINDU UNIVERSITY	VARANASI	60	2.46%	1.30
16	CALCUTTA UNIVERSITY	CALCUTTA	58	2.38%	1.44
17	PHYSICAL RESEARCH LABORATORY	AHMEDABAD	44	1.80%	2.07
18	CENTRE FOR ADVANCED TECHNOLOGY	INDORE	43 📄	1.76%	1.64
19	INDIAN INSTITUTE OF TECHNOLOGY (KHARAGPUR)	KHARAGPUR	42	1.72%	1.43
20	INDIAN INSTITUTE OF ASTROPHYSICS	BANGALORE	40	1.64%	1.93
	TOTAL		1720	70.55%	

снем	STRY	MAX IF = 2.18			
S.No	INSTITUTE	ατγ	NO. /	Cumm % /	AVG. IF
1	INDIAN INSTITUTE OF SCIENCE	BANGALORE	179 🗸	7.22%	1.80
2	BHABHA ATOMIC RESEARCH CENTRE	BOMBAY	162	6.53%	1.17
3	NATIONAL CHEMICAL LABORATORY	POONA	150	6.05%	206
4	INDIAN INSTITUTE OF CHEMICAL TECHNOLOGY	HYDERABAD	96	3.87%	1.58
5	INDIAN ASSOC. FOR THE CULTIVATION OF SOL	CALCUTTA	90	3. 63%	1.61
6	INDIAN INSTITUTE OF TEOFINOLOGY (KHARAGFUR)	KHARAGPUR	80	3.23%	1.13
7	INDIAN INSTITUTE OF TECHNOLOGY (BOMBAY)	BOMBAY	74	2.98%	202
8	INDIAN INSTITUTE OF TECHNOLOGY (DELHI)	NEW-DELHI	72	290%	1.36
9	INDIAN INSTITUTE OF TECHNOLOGY (MADRAS)	MADRAS	66	2.66%	1. 46
10	HYDERABAD UNIVERSITY	HYDERABAD	64	2.58%	1.90
11	BANARAS HINDU UNIVERSITY	VARANASI	62	2.50%	0,96
12	INDIAN INSTITUTE OF TECHNOLOGY (KANPUR)	KANPUR	60	242%	2.13
13	DELH UNIVERSITY	NEWDELH	45	1.81%	1.04
14	CENTRAL DRUGS RESEARCH INSTITUTE	LUCKNOW	45	1.81%	0.57
15	JADAVPURUNVERSITY	CALCUTTA	43	1.73%	12
16	KURUKSHETRA UNIVERSITY	KURUKSHETRA	42	1.69%	0.62
17	RAJASTHAN UNIVERSITY	JAIPUR	39	1.57%	1,00
18	PANJAB LINVERSITY	CHANDIGARH	38	1.53%	1,13
19	MADRASLAVERSITY	MADRAS	37	1.49%	1.06
20	OSMANIA UNIVERSITY	HYDERABAD	36	1. 45%	2 18
	TOTAL		1480	59.68%	

Table 8.1a Number of Publications of Top 20 Indian Institutions in Different Disciplines(1994)

BIOLO	JGY	MAX IF = 3.45			
S.No	INSTITUTE	άτγ	NO.	Cymm%	AVG. IF
1	ALIGARH MUSLIM UNIVERSITY	ALIGARH	√39	V7.01%	3.57
2	INTER CROPS RES. INST. OF SEM ARID TROP. CTR	PATANCHERU	29	5.22%	0.61
3	DELHIUNIVERSITY	NEW-DELHI	25	4.50%	1.50
4	CH CHARAN SINGH HARYANA AGR UNIVERSITY	HSAR	17	3. 06%	0.62
- 5	INDIAN AGRICUL TRAL RESEARCHINSTITUTE	NEWADELHI	16	2.88%	0.75
6	CENTRAL INST. OF MED. & AROMATIC PLANTS	LUCKNOW	16	2.88%	1.04
7	BHABHA ATOMIC RESEARCH CENTRE	BOMBAY	16	288%	1.04
8	PUNUAB AGRICULTURAL UNIVERSITY	LUDHIANA	14	2.52%	1.77
9	BANARAS HINDU UNIVERSITY	VARANASI	14	2.52%	1.03
10	INDIAN INSTITUTE OF SCIENCE	BANGALORE	13	234%	2.04
11	MADURAI KAMARAJ UNIVERSITY	MADLEAN	12	2.16%	0,71
12	NATIONAL INSTITUTE OF OCEANOGRAPHY	PANAJI	12	2.15%	265
13	MADRAS UNVERSITY	MADRAS	11	1.98%	0.95
14	CALOUTTA UNIVERSITY	CALCUTTA	10	1.80%	1.11
15	MAHARSH DAYANAND UNIVERSITY	ROHTAK	9	1.62%	0.64
16	HYDERABAD UNIVERSITY	HYDERABAD	9	1.62%	2.46
17	BOSE INSTITUTE	CALCUTTA	9	1.62%	1.24
18	NATIONAL CHEMICAL LABORATORY	POONA	9	1.62%	1.41
19	INDIAN INSTITUTE OF CHEMICAL TECHNOLOGY	HYDERABAD	9	1.62%	1.43
20	TAMIL NADU AGRICULTURAL UNIVERSITY	COMBATORE	8	1.44%	0.70
	TOTAL		297	53.42%	-

ć

•

Table 8.1a Number of Publications of Top 20 Indian Institutions in Different Disciplines(1994)

EARTH	A SPACE SCIENCES	MAX IF = 1.4			
S.No	INSTITUTE		NO.	Cumm?%	AVG. IF
1	NATIONAL INSTITUTE OF OCEANOGRAPHY	PANAJI	√ <u>36</u>	7.14%	1.18
2	PHYSICAL RESEARCH LABORATORY	AHMEDABAD	35	6.94%	1.40
3	NATIONAL GEOPHYSICAL RESEARCH INSTITUTE	HYDERABAD	25	4.96%	1.12
4	SPACE APPLICATION CENTRE	AHMEDABAD	17	3.37%	0.77
5	INDIAN INSTITUTE OF TECHNOLOGY (DELHI)	NEW-DELH	16	3.17%	0.54
6	BANARAS HINDU UNIVERSITY	VARANASI	15	2.98%	0.47 🦉
7	INDIAN INSTITUTE OF TROPICAL METEOROLOGY	POONA	- 15 -	2.98%	0.54
8	JADAVPUR UNIVERSITY	CALCUTTA	14	2.78%	0.85
9	VIKRAM SARABHAI SPACE CENTRE	TRIVANDRUM	12	2.38%	1.05
10	INDIAN INSTITUTE OF GEOMAGNATISM	BOMBAY	12	2,38%	0,66
11 :	INDIAN INSTITUTE OF TECHNOLOGY (MADRAS)	MADRAS	11	2.18%	0.29
12	INDIAN INSTITUTE OF TECHNOLOGY (BOMBAY)	BOMEAY	-11	2.18%	0.68
13	DELH UNIVERSITY	NEW4DELHI	11	2.18%	078
14	NATIONAL PHYSICAL LABORATORY	NEW4DELHI	11	2.18%	1.09
15 :	INDUSTRIAL TOXICOLOGY RESEARCH CENTRE	LUCKNOW	n 🕺	218%	0.30
16	BHABHA ATOMIC RESEARCH CENTRE	BOMBAY	11	2.1 8%	0.99
17	INDIAN INSTITUTE OF SCIENCE	BANGALORE	10	1.98%	0.77
18	ROORKEE UNIVERSITY	ROORKEE	10	1.98%	1.00
19	GEOLOGICAL SURVEY OF INDIA	NAGPUR	10	1.98%	0.79
20	INDIAN INSTITUTE OF TECHNOLOGY (KANPUR)	KANPUR	9	1. 79%	0. 82
	TOTAL		302	59.92%	

GRIC	ULTURE	MAX IF = 1.47			
S.No	INSTITUTE	ary	ŅO.	Çumm %	AVG. IF
1	INTER CROPS RES. INST. OF SEMI ARID TROP. CTR	PATANCHERU	³⁷ 37	^J 13.03%	0.69
2	CENTRAL FOOD TECHNOL RES. INSTITUTE	MYSORE	30	10. 56%	0.87
3	PUNJAB AGRICULTURAL UNIVERSITY	LOCHANA	23	8.10%	0.63
4	CH. CHARAN SINGH HARYANA AOR LINIVERSITY	HISAR	18	6.34%	0.63
5	GB PANT UNIVERSITY OF AGR. & TECH.	PANTNAGAR	17	5.99%	0.47
6	INDIAN AGRICULTRAL RESEARCH INSTITUTE	NEWDELH	14	4.93%	0.62
7	INDIAN INSTITUTE OF TECHNOLOGY (KHARAGPUR)	KHARAGPUR	9	3.17%	0.58
8	BANARAS HINDU UNIVERSITY	VARANASI	7	2.46%	0.69
9	BHABHA ATOMIC RESEARCH CENTRE	BOMBAY	7	2.46%	0.83
10	MYSORE LANVERSITY	MYSORE	6	211%	0.33
11	CENTRAL SOIL SALINITY RESEARCH INSTITUTE	KARNAL	6	211%	0.45
12	CENTRAL RICE RESEARCH INSTITUTE	CUTTACK	6	2.11%	0.65
13	UNIVERSITY OF AGRICULTURAL SCIENCES	BANGALORE	5	1.76%	0.52
14	HIMACHAL PRADESH KRISHI VISHWAVIDYALAYA	PALAMPUR	5	1.76%	0.74
15	CALCUTTA UNIVERSITY	CALCUTTA	5	1.76%	0.68
16	NATIONAL DAIRY RESEARCH INSTITUTE	KARNAL	5	1.76%	1.47
17	KUMAUN UNIVERSITY	NAINI-TAL	4	1.41%	0.85
18	KERALA AGRICULTURAL UNIVERSITY	TRISSUR	4	1.41%	0.34
19	GUARATAGRICULTURAL UNIVERSITY	NAVSARI	4	1.41%	0.48
20	NATIONAL DAIRY RESEARCH INSTITUTE	BANGALORE	4	1.41%	1.04
	TOTAL		216	76.06%	

CLINICAL MEDICINE MAX IF = 2.88 S.No INSTITUTE aty NO. Cumm % AVG. IF 249 ~ 14.19%^j ALL INDIA INSTITUTE OF MEDICAL SCIENCES NEW-DELHI 2,08 1 CHANDIGARH 159 9.06% 1.98 2 POST GRADUATE INST. OF MED. EDUCATION & RES. 139 3 CHRISTIAN MEDICAL COLLEGE VELLORE ASSOC. VELLORE 7.92% 1.50 SANJAY GANDHI PG INST. OF MEDICAL SCIENCES LUCKNOW **99** 5.64% 2.04 4 80 4.56% 5 TATA MEMORIAL CENTRE BOMBAY 1.84 63 3.59% 2.27 6 NIMHANS BANGALORE 2.96% 7 BANARAS HINDU UNIVERSITY VARANASI 52 2.88 KASTURBA GANDHE MED. COLLEGE & HOSPITAL 2.51% 8 MANIPAL 44 1.53 CENTRAL DRUGS RESEARCH INSTITUTE LUCKNOW 44 2.51% 1.56 9 againia TRIVANDRUM 38 217% 1.55 10 REGIONAL CANCER CENTRE 1.71% 11 JAWAHARLALINST. OF PG MED EDU & RES. PONDICHERRY 30 1:52 NATIONAL INSTITUTE OF IMMUNOLOGY NEW+DELHI 30 1.71% 2.45 12 13 NIZAM'S INSTITUTE OF MEDICAL SCIENCES HYDERABAD 29 1.65% 283 14 INDUSTRIAL TOXICOLOGY RESEARCH CENTRE LUCKNOW 26 1.48% 1.67 GUIARAT CANCER & RESEARCH INSTITUTE 25 1.42% 1.02 15 AHMEDABAD BHABHA ATOMIC RESEARCH CENTRE 16 BOMBAY 25 1.42% 1.79 .17 KEM HOSPITAL BOMBAY BOMBAY 24 1.37% 2.55 23 18 🗠 CALCUTTA UNIVERSITY CALCUTTA 1.31% 1.44 **1 16** 🔄 19 SETH GS MEDICAL COLLEGE BOMBAY 21 1.20% TRIVANDRUM 20 SREE CHITRA TIRUNAL INST. OF MED. SCI. & TECH. 21 1.20% 0.65

Table 8.1a Number of Publications of Top 20 Indian Institutions in Different Disciplines(1994)

TOTAL

1221 69.57%

NOME	DICAL RESEARCH	MAX			
S.No	INSTITUTE	ατγ	NO.	Cumm%	AVG. IF
1	INDIAN INSTITUTE OF SCIENCE	BANGALORE	92 J	7.99%	2.65
2	CENTRE FOR CELLULAR & MOLECULAR BIOLOGY	HYDERABAD	52	4.52%	244
3	BANARAS HINOU UNIVERSITY	VARANAS	45	3.97%	1.07
4	POST GRADUATE INST. OF MED. EDUCATION & RES	CHANDIGARH	40 - 1	3.48%	0.96
5	INDIAN INSTITUTE OF CHEMICAL BIOLOGY	CALCUTTA	40	3.48%	1.89
6	JAWAHARLAL NEHRU UNIVERSITY	NEW-DELHI	33	2.87%	1.75
7	ALL INDIA INSTITUTE OF MEDICAL SCIENCES	NEW/DELH	33	2.87%	1.65
8	BHABHA ATOMIC RESEARCH CENTRE	BOWBAY	33	2.87%	1.58
9	DELHI UNIVERSITY	NEVI4DELHI	32	2.78%	1.70
10	CENTRAL FOOD TECHNOL, RES. INSTITUTE	MYSORE	31	2.69%	1.51
11	CENTRAL DRUGS RESEARCH INSTITUTE	LUCKNOW	30	2.61%	1.16
12	ALIGARH MUSLIM UNIVERSITY	ALIGAR	28	2.43%	0.63
13	INDIAN INSTITUTE OF TECHNOLOGY (DELHI)	NEV4CELH	27	2.35%	1.10
14	MADRAS UNIVERSITY	MADRAS	27	2.35%	1.08
15	NATIONAL CHEMICAL LABORATORY	POONA	27	2.35%	1.95
16	BOSE INSTITUTE	CALCUTTA	26	2.26%	2.31
17	HYDERABAD UNIVERSITY	HYDERABAD	24	2.09%	1.35
18	TATA INSTITUTE OF FUNDAMENTAL RESEARCH	BOMBAY	22	1.91%	4.42
19	CALCUTTA UNIVERSITY	CALCUTTA	21	1.82%	2.38
20	NATIONAL INSTITUTE OF IMMUNOLOGY	NEWLDELHI	19	1.65%	3.1 3
	TOTAL		682	59,25%	

ENGINEERING & TECHNOLOGY MAX IF = 0.81 S.No INSTITUTE atr NO. Qmm% AVG. IF 1 INDIAN INSTITUTE OF SCIENCE 12.50% BANGALORE 114:/ 0.67 68 2 INDIAN INSTITUTE OF TECHNOLOGY (DELH) NEWHOELH 7.46% 0.50 3 INDIAN INSTITUTE OF TECHNOLOGY (MADRAS) MADRAS 65 7.13% 0.55 4 INDIAN INSTITUTE OF TECHNOLOGY (KHARAGPUR) KHARAGPUR 65 7.13% 0.67 5 INDIAN INSTITUTE OF TECHNOLOGY (KANPUR) 7.02% KANPUR 64 0.62 6 BHABHA ATOMIC RESEARCH CENTRE 5.70% 0.80 BOMBAY 52 7 BANARAS HINDU UNIVERSITY VARANASI 48 5.26% 0.61 K K K K K 8 ROCHCE UNIVERSITY ROORKEE 34 373% 0.53 9 INDIAN INSTITUTE OF TECHNOLOGY (BOMBAY) 2,74% BOMBAY 25 0.73 10 INDIRA GANDHI CENTRE FOR ATOMIC RESEARCH KALPAKKAM 2.63% 24 0.70 11 BOMBAY UNIVERSITY 20 219% BOMBAY 0.79 12 NATIONAL CHEMICAL LABORATORY 219% POONA 20 0.81 13 DEFENCE METALLURGICAL RES. LABORATORY HYDERABAD 19 2.08% 0.70 14 MEERUTUNIVERSITY MEERUT 16 1.75% 0.17 15 SRI VENKATESWARA UNIVERSITY KURNOOL 1.43% 0.77 13 1,43% 16 VIKRAM SARABHAI SPACE CENTRE TRIVANDRUM 0.48 13 i nada es 17. TATA INSTITUTE OF FUNDAMENTAL RESEARCH. BOMBAY. 13 1.43% 0.22 18 REGIONAL ENGINEERING COLLEGE TIRUCHCHRAPPALLI 12 1.32% 0.39 19 CALCUTTA UNIVERSITY 1.21% CALCUTTA 11 0.62 MADRAS 20 ANNALNIVERSITY 11 1.21% 0,44 Alle - Alexandr TOTAL 707 %

Table 8.1a Number of Publications of Top 20 Indian Institutions in Different Disciplines(1994)

7	7	7	.52

COMPUTER & COMMUNICATION SCIENCES	MAX IF = 1.38			
S.No INSTITUTE	ατγ	NO.	Cumm%	AVG. IF
1 INDIAN INSTITUTE OF SCIENCE	BANGALORE	/	17.56%	0.86
2 INDIAN STATISTICAL INSTITUTE	CALCUTTA	21	16.03%	0.74
3 INDIAN INSTITUTE OF TECHNOLOGY (KHARAGPUR)	KHARAGPUR	13	9.92%	0.87
4 INDIAN INSTITUTE OF TECHNOLOGY (MADRAS)	MADRAS	10	7.63%	0.80
5 DELHUNVERSITY	NEWDELH	10	7,63%	0.57
6 INDIAN INSTITUTE OF TECHNOLOGY (DELH)	NEW DELH	8	6.11%	0.60
7 INDIAN INSTITUTE OF TECHNOLOGY (BOMBAY)	BOMBAY	7	5.34%	0.85
8 HARCOURT BUTLER TECHNOLOGY INSTITUTE	KANPLR	3	2.29%	0.58
9 INDIAN INSTITUTE OF TECHNOLOGY (KANPUR)	KANPUR	3	2.29%	0.75
10 BHARATHIDASAN UNIVERSITY	TIRUCHCHIRAPPALLI	3	2.29%	1.30
11 NATIONAL METALLURGICAL LABORATORY	JAMSHEDRUR	3	2. 29%	1.38
12 TATA INSTITUTE OF FUNDAMENTAL RESEARCH	BOMBAY	3	2.29%	0.90
13 MAHARSHI DAYANAND UNVERSITY	· ROHTAK	.2	1.53%	0.27
14 JADAVPUR UNIVERSITY	CALCUTTA	2	1.53%	0.83
15 CALCUITA UNIVERSITY	CALCUTTA	2	1.53%	0.83
18 NIMHANS	BANGALORE	2	1.53%	0.54
17 RESEARCH & DEVELOPMENT DIVISION	HYDERABAD	1	0.76%	0.63
18 PRECISAUTOMATIC & ROBOTIC INDIA	POONA	1	0.76%	0.87
19 MOTOROLA INDIA ELECTRONICS LTD	BANGALORE	1	0.76%	0.56
20 TILAK DHARI POST GRADUATE COLLEGE	JAUNPUR	1	0.76%	0.30
TOTAL	<u></u>	119	90.84%	

162

ATER	IAL SCIENCES	MAX IF = 1.09			
S.No	INSTITUTE	CITY	NO,	Cumm %	AVG. IF
1	INDIAN INSTITUTE OF SCIENCE	BANGALORE	56 🗸	14.89%	1.09
2	INDIAN INSTITUTE OF TECHNOLOGY (KHARAGPUR)	KHARAGPUR	24	6.38%	0.65
3	INDIAN INSTITUTE OF TECHNOLOGY (MADRAS)	MADRAS	20	5.32%	0.56
4	INDIAN ASSOC, FOR THE CULTIVATION OF SCI.	CALCUTTA	18	4.79%	1.09
5	CENTRAL GLASS & CERAMIC RES. INST.	CALCUTTA	18	4.79%	0.71
6	INDIRA GANDHI CENTRE FOR ATOMIC RESEARCH	KALPAKKAM	18.	4.79%	0.56
7	REGIONAL RESEARCH LABORATORY	TRIVANDRUM	16	4.26%	0.69
8	INDIAN INSTITUTE OF TECHNOLOGY (DELHI)	NEW-DELHI	14	3.72%	0.90
9	INDIAN INSTITUTE OF TECHNOLOGY (BOMBAY)	BOMBAY	13	3.46%	0.74
10	BANARAS HINDU UNIVERSITY	VARANASI	13	3.46%	0.77
11	ANNA UNIVERSITY	MADRAS	13	3.46%	0.59
12	NATIONAL PHYSICAL LABORATORY	NEW-DELHI	13	3.46%	0.81
13	BHABHA ATOMIC RESEARCH CENTRE	BOMBAY	12	3.19%	0.61
14	OSMANIA UNIVERSITY	HYDERABAD	10	2.66%	0.78
15	DEFENCE METALLURGICAL RES. LABORATORY	HYDERABAD	10	2.66%	0.92
16	INDIAN INSTITUTE OF TECHNOLOGY (KANPUR)	KANPUR	. g	2,39%	0.50
17	MADRASUNIVERSITY	MADRAS	9	2.39%	0.55
18	SHIVAJI UNIVERSITY	KOLHAPUR	7	1.86%	0.60
19	NATIONAL METALLURGICAL LABORATORY	JAMSHEDPUR	7	1.86%	0.75
20	SRI VENKATESWARA UNIVERSITY	TIRUPATI	6	1.60%	0.78

IULTIL	DISCIPLINARY	MAX IF = 1.05			
S.No	INSTITUTE	CITY	NO.	Cumm % /	AVG. IF
1	INDIAN INSTITUTE OF SCIENCE	BANGALORE	61 🗸	11.07%	1.05
2	BANARAS HINDU UNIVERSITY	VARANASI	27	4.90%	0.29
3	BHABHA ATOMIC RESEARCH CENTRE	SHASTRI-NAGAR	18	3.27%	0.28
4	RAMAN RESEARCH INSTITUTE	BANGALORE	15	2.72%	0.27
5	NATIONAL AERONAUTICAL LABORATORY	BANGALORE	14	2.54%	0.27
6	NISTADS.	NEW-DECHI	12	2.18%	0.24
7	CENTRE FOR CELLULAR & MOLECULAR BIOLOGY	HYDERABAD	12	2.18%	0.25
8	UNIVERSITY OF AGRIGULTURAL SCIENCES	BANGALORE	11	2.00%	0.27
9	NATIONAL INSTITUTE OF OCEANOGRAPHY	PANAJI	11	2.00%	0.27
10	MADURAI KAMARAJ UNIVERSITY	MADURAI	10	1.81%	0.27
11	TATA INSTITUTE OF FUNDAMENTAL RESEARCH	BOMBAY	10	1.81%	2.79
12	INDIAN INSTITUTE OF TECHNOLOGY (BOMBAY)	BOMBAY	9	1,63%	0.26
13	DEPARTMENT OF SCIENCE & TECHNOLOGY	NEW4DELHI	9	1.63%	0.26
14	NATIONAL GEOPHYSICAL RESEARCH INSTITUTE	HYDERABAD	9	1.63%	0.27
15	NATIONAL CHEMICAL LABORATORY	POONA	9	1.63%	0.27
16 🛬	PANJAB UNIVERSITY	CHANDIGARH	8	1.45%	0.27
17	JAWAHARLAL NEHRU UNIVERSITY	NEW DELHI	8	1.45%	0.27
18	DELHI UNIVERSITY	NEW DELHI	8	1.45%	0.26
19 24,	SREE CHITRA TIRUNAL INST. OF MED. SCI. & TECH.	TRIVANDRUM	8.	1.45%	0.27
20	BOSE INSTITUTE	CALCUTTA	8	1.45%	0.28
	TOTAL		277	50.27%	

ς.

(4004)

8.1 Inter institutional Comparison

A comparison of institutions in terms of their output of papers and impact appears possible in principle. However, in practice it presents several difficulties. The average output and average impact factor of the disciplines varies considerably at the national level. Again, the proportion of papers in different disciplines varies sharply between institutions. This is to be expected as institutions often specialize in a few or even in a single discipline. Thus comparisons may be made on the basis of the IF of papers contributed by the institutions within a single discipline, as has been done in Table 8.1a. We may be able to say for example that Institution X is 'better' than Institution Y in Physics. It is not entirely meaningful to make a direct comparison of institutions using their average IF's irrespective of discipline.

In spite of the limitations noted above, we have attempted to group the institutions into the following categories

more productive and effective	(higher output, higher IF)
more productive but less effective	(higher output, lower IF)
less productive but effective	(lower output, higher IF).
less productive, less effective	(lower output, lower IF)

The divisions between categories are effected by taking the top 50 institutions in terms of output, and splitting them with respect to the mean value of output and Impact Factor, to lie either above or below the mean in each case.

8.2 Top Institutions

In order to assess and compare the contribution of the top institutions, the institution names had to be standardized, as they appeared under several forms. The institutional output for the top 50 institutions in the years 1994 and 1990, in terms of total papers in each discipline, was ascertained (Tables 8.1b and 8.1c). We then selected the top 50 institutions in terms of output from the 1994 data, based on the additional condition that they should also have been among the top forty institutions of 1990. These 'elite' institutions which accounted for 7395 papers in 1994, or about 65.4 percent of the literature from India as reflected in the *SCI*, have been compared in terms of output and impact in Section 8.3

1 INDIAN INSTITUTE OF SCIENCE 2 BHABHA AYOMIC RESEARCH CENTRE 3 TATA INSTITUTE OF FUNDAMENTAL RESEARCH 4 BANARAS HINDU UNIVERSITY 5 INDIAN INSTITUTE OF TECHNOLOGY (DELHI)	9	164	151	10										
3 TATA INSTITUTE OF FUNDAMENTAL RESEARCH 4 BANARAS HINDU UNIVERSITY	07			10	10	2	12	79	97	49	53	21	657	1.682
4 BANARAS HINDU UNIVERSITY	07	135	137	15	11	7	23	30	45	10	16		429	1.35
	27	253	15	1	1		6	21	13	1	9	1	348	2 168
E INDIAN INSTITUTE OF TROUNDLOCK (DEL DI)	6	54	62	14	14	7	41	41	43	11	25		318	1.17
S MUMAING HIVE OF LEGANOLOGI (DELNI)	5	69	67	1	12	1	2	26	64	13	7	8	275	0.96
5 INDIAN INSTITUTE OF TECHNOLOGY (MADRAS)	9	68	65	3	8	2	1	9	62	18	6	9	260	0.96
7 INDIAN INSTITUTE OF TECHNOLOGY (KHARAGPUR)	4	38	72	2	8	8		2	60	23	1	12	230	0.96
8 NATIONAL CHEMICAL LABORATORY		14	142	9			1	26	20	6	9		226	1 82
9 DELHI UNIVERSITY	11	62	43	25	11	1	12	29	8	2	8	7	219	1.31
10 ALL INDIA INSTITUTE OF MEDICAL SCIENCES		2	3	1	1		180	28	-	-	3	1	219	2.34
TT INDIAN INSTITUTE OF TECHNOLOGY (BOMBAY)	4	70	64	Á	10		3	10	25	11	- 9	7	217	1.60
12 INDIAN INSTITUTE OF TECHNOLOGY (KANPUR)	8	57	59	-	9		1 .	6	58	9	5	Э	215	1 58
13 INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE	-	81	81		÷.		2		3	ťa	2	u	198	1 49
14 HYDERABAD UNIVERSITY	1	71	63	9	1		13	24	•	5	2	1	190	193
15 JADAVPUR UNIVERSITY	2	89	42	2	13		14	11	10	2	2	2	189	1.10
16 CALCUTTA UNIVERSITY	2	65	30	10	9	5	22	20	11	1	5	2	172	1.2
17 MADRAS UNIVERSITY	3	26	36		3	2	18	26		8	7	1		
18 ALIGARH MUSLIM UNIVERSITY	2	23		11	3 1	2	8		2	ø	4		143	0.9
	2	23	34	34	1		-	27	2		•		135	14
19 POST GRADUATE INSTITUTE OF MEDICAL EDUCATION AND RESEARCH		15		1			101	30			2		134	16
20 INDIAN INSTITUTE OF CHEMICAL TECHNOLOGY			95	(1	2	3	3	2	4	1	1	134	14
21 NATIONAL PHYSICAL LABORATORY	1	79	10	-	11	1	-		9	13	1		125	13
22 OSMANIA UNIVERSITY		30	36	7	4	1	7	17	7	9	4		122	1.6
23 JAWAHARLAL NEHRU UNIVERSITY	1	29	6	7	8	2	14	27		4	8	1	107	1.5
24 ROORKEE UNIVERSITY	2	25	21	1	9	1		5	33	4	5	•	106	1.0
25 CENTRAL DRUGS RESEARCH INSTITUTE		2	41	4			31	24			3		105	1.0
26 CHRISTIAN MEDICAL COLLEGE VELLORE ASSOCIATION				1			91	6			2		100	1.8
27 POONA UNIVERSITY	4	26	30	2	3		3	13	3	6	5	1	96	1.4
28 PANJAB UNIVERSITY	2	29	37		4	1	4	8			8		93	1.4
29 BOMBAY UNIVERSITY	2	15	33		1	1	11	1	20	3	2		89	09
30 SAHA INSTITUTE OF NUCLEAR PHYSICS		70	9				2	5		1		1	88	19
31 PHYSICAL RESEARCH LABORATORY		43			35				3		6		87	1.6
32 SANJAY GANDHI POST GRADUATE INSTITUTE OF MEDICAL SCIENCES							76	7			1		84	1.9
33 RAJASTHAN UNIVERSITY		25	38	1			6	2	2	4	3		83	0.9
34 INDIAN STATISTICAL INSTITUTE	30	15		1	5	1	1	5	1		1	18	78	0.8
35 CENTRAL FOOD TECHNOLOGICAL RESEARCH INSTITUTE			13	2		28	4	29			1		77	11
36 INDIRA GANDHI CENTRE FOR ATOMIC RESEARCH		20	12	1	1		1		22	18	1		76	1.0
37 INTER, CROPS RESEARCH INST, OF SEMI ARID TROPICAL CENTRE				29	1	36		7			2		75	07
38 REGIONAL RESEARCH LABORATORY		11	33	1		1		5	5	16	1		73	13
39 MADURAI KAMARAJ UNIVERSITY		13	19	12	1	1	5	10	1		10 ;		72	10
40 CENTRE FOR CELLULAR & MOLECULAR BIOLOGY			3		1		4	52			12		72	2.1
41 ANNA UNIVERSITY		35	4		1		1	5	11	12	2		71	0.8
42 SRI VENKATESWARA UNIVERSITY		15	20	4	4		6	2	13	6			70	1.2
43 INSTITUTE OF PHYSICS		69	1										70	1.9
44 NORTH EASTERN HILL UNIVERSITY		25	23	6	1	2	1	9			2		69	0 9
45 MS UNIVERSITY OF BARODA	1	9	29	1	4	1	7	10	3	1	3		69	1.0
46 INDIAN INSTITUTE OF CHEMICAL BIOLOGY	•	-	11	Ś	-	•	15	36	•	•	2		69	2.0
47 PUNJAB AGRICULTURAL UNIVERSITY	2	5	4	14	2	22	3	11	3		1		67	1.0
48 KURUKSHETRA UNIVERSITY	•	8	42	.4	2		7	2	1	2	3		67	1.0
49 BOSE INSTITUTE		15	7	9	4		5	23	,	4	6		65	1.4
50 MAKARSHI DAYANAND UNIVERSITY		13	24	9	2		1	23	6		2	2	62	0.6
TOTAL	138	1972	1767	276	223	136	771	783	668	289	273	99	7395	1.4

.

Table 8.1c SCIENTIFIC OUTPUT OF INDIAN INSTITUTIONS IN DIFFERENT DISCIPLINES : SCI DATA 1990

	MAT	РНУ	CHE	<u>B/O</u>	GEO	AGRI	MED	BMD	ENGG	MTL	MUL	СОМР	TOT	AVG_IF
INDIAN INSTITUTE OF SCIENCE	4	146	107	4	B	1	13	60	62	24	35	9	473	1.524
BHABHA ATOMIC RESEARCH CENTRE	1	148	130	14	4	11	19	30	27	6	11		401	1 369
TATA INSTITUTE OF FUNDAMENTAL RESEARCH	39	175	16		2		3	20	3	2	8	3	271	1.956
BANARAS HINDU UNIVERSITY	2	74	52	27	18	е	38	42	45	13	7		326	1.018
INDIAN INSTITUTE OF TECHNOLOGY (DELRI)	3	64	61		11	1	2	15	45	21	1	4	228	1 023
INDIAN INSTITUTE OF TECHNOLOGY (MADRAS)	2	80	52		1		1	5	48	17	2	2	210	0.919
INDIAN INSTITUTE OF TECHNOLOGY (KHARAGPUR)	2	44	48	7	11	8		1	33	35		7	196	1.001
NATIONAL CHEMICAL LABORATORY		19	84	з		1	1	21	14	8	3		154	1 649
DELHIUNIVERSITY	3	60	55	13	7	3	34	20	9	6	4		214	1 213
ALL INDIA INSTITUTE OF MEDICAL SCIENCES		3	1	1		-	171	14		1			191	2.046
INDIAN INSTITUTE OF TECHNOLOGY (BOMBAY)	7	36	63	3	4		7	6	32	4	1	5	168	1.462
INDIAN INSTITUTE OF TECHNOLOGY (KANPUR)	6	53	45		10			3	46	10	1		174	1.306
INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE		73	70		1		1	6	3	9			163	1 545
HYDERABAD UNIVERSITY	4	43	33	6	1	1	1	15	2	3	3		112	1.630
JADAVPUR UNIVERSITY	1	76	51	-	12	•	8	10	20	4	5		182	1 148
CALCUTTA UNIVERSITY	7	32	18	25	9	2	28	35	2	2	4	1	166	1.150
MADRAS UNIVERSITY	3	26	28	8	4	3	23	18	-	2	7	•	122	1.000
ALIGARH MUSLIM UNIVERSITY	2	16	58	10	3	2	18	13	4	-	6		132	0 697
POST GRADUATE INSTITUTE OF MEDICAL EDUCATION AND RESEARCH	-			2	-	-	144	21	•		1		168	1.402
INDIAN INSTITUTE OF CHEMICAL TECHNOLOGY		8	103	1	1	1	5	5	8	5	3		140	1.530
NATIONAL PHYSICAL LABORATORY		64	3		9	•	•	1	B	10	2		97	1.225
OSMANIA UNIVERSITY		26	62	1	5		7	7	7	10	10		135	1 109
JAWAHARLAL NEHRU UNIVERSITY		11	2	12	5	1	10	23	2		5	1	72	1.366
ROORKEE UNIVERSITY	2	14	31		12	•	10	5	27	5	Ū	•	96	1.044
CENTRAL DRUGS RESEARCH INSTITUTE	-	2	55	11	2		59	17	-	-	9		155	1.391
CHRISTIAN MEDICAL COLLEGE VELLORE ASSOCIATION		-			-		48	4					52	1 558
POONA UNIVERSITY		45	28	1			9	4	2	5	3		97	1 643
PANJAB UNIVERSITY	3	39	43	7	3	2	31	21	6	1	6		162	1.249
BOMBAY UNIVERSITY	2	11	25			2	1	1	24	1	1		68	0.818
SAHA INSTITUTE OF NUCLEAR PHYSICS	-	64	9			-	1	10			2		86	1.595
PHYSICAL RESEARCH LABORATORY		23	-	1	17		-	1			4		46	2.395
SANJAY GANDHI POST GRADUATE INSTITUTE OF MEDICAL SCIENCES				-			7	•			1		8	1 411
RAJASTHAN UNIVERSITY	3	39	54	4	3	1	10	2	4	2	5		127	0.849
INDIAN STATISTICAL INSTITUTE	26	16	• ·	3	4	1		4	2	-	1	4	61	1.223
CENTRAL FOOD TECHNOLOGICAL RESEARCH INSTITUTE		1	6	4	1	16		17	-		4		49	0.937
INDIRA GANDHI CENTRE FOR ATOMIC RESEARCH		24	5			.0			22	6	•		57	1.039
INTERNATIONAL CROPS RESEARCH INSTITUTE OF SEMI ARID TROPICAL CENTRE			-	30	1	36	1	4	1	-	1		74	1 115
REGIONAL RESEARCH LABORATORY (KERALA)		4	15		-	3	•	3	4	11	•		40	0.966
MADURAI KAMARAJ UNIVERSITY		17	15	5		1	5	ŝ	•		6		57	1 042
CENTRE FOR CELLULAR & MOLECULAR BIOLOGY		1	2	-	1	•	1	17			5		27	2 507
ANNA UNIVERSITY		25	7				2	1	5	11	-	1	52	1.998
SRI VENKATESWARA UNIVERSITY		17	36	4	7	2	2	23	2	12	5	-	110	0 863
INSTITUTE OF PHYSICS		25				-	-	20	-		0		25	2 196
NORTH EASTERN HILL UNIVERSITY	1	21	29	10	2		1	1	1		2		68	1 254
MS UNIVERSITY OF BARODA		3	20	5	-	1	5	11	'	1	4		50	0.991
INDIAN INSTITUTE OF CHEMICAL BIOLOGY		-	12	1		•	15	33	1	•	2	1	65	1.802
PUNJAB AGRICULTURAL UNIVERSITY	2	2	4	15		25	17	5	1		4	,	75	0.697
KURUKSHETRA UNIVERSITY	1	4	31	5	1	24	1	2	2		1		49	0.977
BOSE INSTITUTE	'	9	6	Š	•		4	 26	4		á		54	1.898
MAHARSHI DAYANAND UNIVERSITY		18	31	2	2		7	20		1	3		57	0.796
			4000										0000	
TOTAL	126	1701	1606	252	182	133	754	611	524	248	167	38	6362	1.314

٠

8.3 Comparison between Elite institutions

Having initially selected top 50 institutions, it became possible to rate them among the elite collection with respect to the average for the group. This procedure separates out 4 categories within the institutional group, in terms of output and impact being above or below the group average. This implies a comparison between elite institutions and not in terms of national average. For example, the national average of the Impact Factor in all disciplines combined was 1.33 in 1994, as against the average of the 'elite' institutions which was 1.43.

It is possible to debate whether this is an appropriate method to classify institutions. However, our objective here is not to provide foolproof evidence of the membership of an institution within one or other category, but to demonstrate a methodology by which an inter-institutional comparison could be made. All calculations were based on the 1994 values of the Journal Impact Factor. Tables 8.2a and 8.2b show the list of elite institutions sub-divided into four categories, namely

Higher output, higher impact	Higher output, lower impact
Lower output, lower impact	Lower output and higher impact

Certain institutions that maintained their position in the high-output-high impact group in both years were IISc, TIFR, NCL, IIT (Bombay), Indian Association for the Cultivation of Science. others such as Hyderabad University moved up from lower than average output to the high output-high impact group, while Panjab, Osmania and Aligarh Universities moved from the high output-low impact group to the low output-high impact group, thus improving upon their Impact factor, even as their output fell between 1990 and 1994.

The **Post Graduate Institute of Medical Research** fell from the *high output-high impact* group to lower than average output, maintaining its impact above average.

IIT (Kanpur) and BARC moved from the *high output-high impact* group to the *high output-low impact* group, failing to maintain their higher than average impact.

IICT and *CDRI* fell from higher than average in both output and impact to lower than average on both counts.

Table 8.2a : Categories of Indian Institutions in terms of Output and Impact Factor 1994

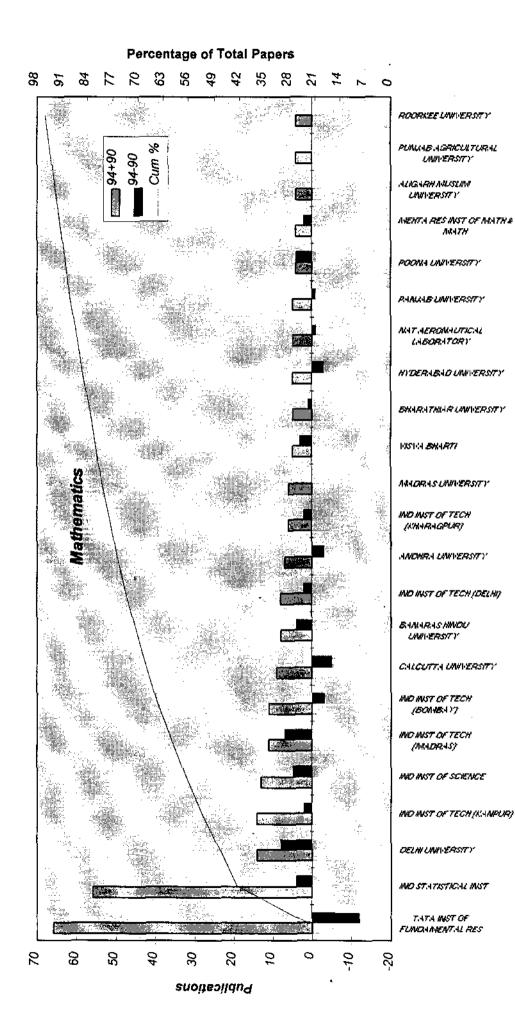
	' DEMATIONS I			RANK ON	
	AVERAGE PAPERS	AVG IF	O/P - IF	TOTAL	
INSTITUTE	PAP553	AVGIP	01-11-	IOTAL	-
INDIAN INSTITUTE OF SCIENCE	509	0.246	+ +	1	
TATA INSTITUTE OF FUNDAMENTAL RESEARCH	200	0.732	++	3	-
NATIONAL CHEMICAL LABORATORY	78	0.385	+ +	8	ingine migue
ALL INDIA INSTITUTE OF MEDICAL SCIENCES	71	0.904	++	tŌ	2
INDIAN INSTITUTE OF TECHNOLOGY (BOMBAY)	69	0.166	++	11	
INDIAN INSTITUTE OF TECHNOLOGY (KANPUR)	67	0.146	++	12	Ş
INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE	50	0.061	++	13	
HYDERABAD UNIVERSITY	42	0.503	++	14	
BHABHA ATOMIC RESEARCH CENTRE	281	-0.081	+-	2	_
BANARAS HINDU UNIVERSITY	170	-0.265	+ -	4	
INDIAN INSTITUTE OF TECHNOLOGY (DELHI)	127	-0.469	+-	5	ç
INDIAN (INSTITUTE OF TECHNOLOGY (MADRAS)	112	-0.470	+ -	6	
INDIAN INSTITUTE OF TECHNOLOGY (KHARAGPUR)	82	-0,467	+-	7	roner milane
DELH UNIVERSITY	71	-0.128	+-	9	
JADAVPUR UNIVERSITY	41	-0,254	+ -	15	
CALCUTTA UNIVERSITY	24	-0,144	+-	15	
ALIGARH MUSLIM UNIVERSITY	-13	0,006	- +	18	-
POST GRADUATE INSTITUTE OF MEDICAL EDUCATION AND RESEARCH	-14	0.218	- +	19	
OSMANIA UNIVERSITY	-26	0.154	- +	22	
JAVAHARIAL NEHRU UNIVERSITY	-20	0.136	- +	23	
CHRISTIAN MEDICAL COLLECE VELLORE ASSOCIATION	-48	0.463	-+	25	
	-40 -52	0,013	-+	27	
		0,011	-+	27	
PANJAB UNIVERSITY	-55		-+		
SAHA INSTITUTE OF NUCLEAR PHYSICS	-60	0.508	- +	30	
PHYSICAL RESEARCH LABORATORY	-61	0,185	-+	31	
SANJAY GANDHI POST GRADUATE INSTITUTE OF MEDICAL SCIENCES	-64	0.531		32	
CENTRE FOR CELLLAR & MOLECULAR BIOLOGY	-76	0.664	-+	40	
INSTITUTE OF PHYSICS	-78	0.472	-+	43	
INDIAN INSTITUTE OF CHEMICAL BIOLOGY	-79	0.614	-+	46	
BOSE INSTITUTE		0.012	+	49	
MADRAS UNIVERSITY	-6	-0.494		17	
INDIAN INSTITUTE OF CHEMICAL TECHNOLOGY	-14	-0.002		20	
NATIONAL PHYSICAL LABORATORY	-23	-0.105		21	
ROOFICEE UNIVERSITY	-42	-0.425		24	
CENTRAL DRUGS RESEARCH INSTITUTE	-43	-0.339		25	
BOMBAY UNIVERSITY	-59	-0.503		29	
RAJASTHAN UNIVERSITY	-65	-0.467	÷-	33	
INDIAN STATISTICAL INSTITUTE	-70	-0.628		34	
CENTRAL FOOD TECHNOLOGICAL RESEARCH INSTITUTE	-71	-0.253		35	
INDIRA GANDHI CENTRE FOR ATOMIC RESEARCH	-72	-0.365		36	
INTER, CROPS RESEARCH INST, OF SEMI ARID TROPICAL CENTRE	-73	-0.711		37	
REGIONAL RESEARCH LABORATORY	-75	-0.052	- - '	38	
MADURAI KAMARAJ UNIVERSITY	-76	-0.434		39	
ANNA UNIVERSITY	-77	-0.587		41	
SRI VENKATESWARA UNIVERSITY	-78	-0.206		42	
MS UNIVERSITY OF BARCOA	-79	-0.380	~ -	45	
NORTH EASTERN HILL UNIVERSITY	-79	-0.438		44	
PUNJAB AGRICULTURAL UNIVERSITY	-81	-0.364		47	
KURUKSHETRA UNIVERSITY	-81	-0.411		48	
MAHARSH (DAYANAND UNIVERSITY	-86	-0.806		50	

168

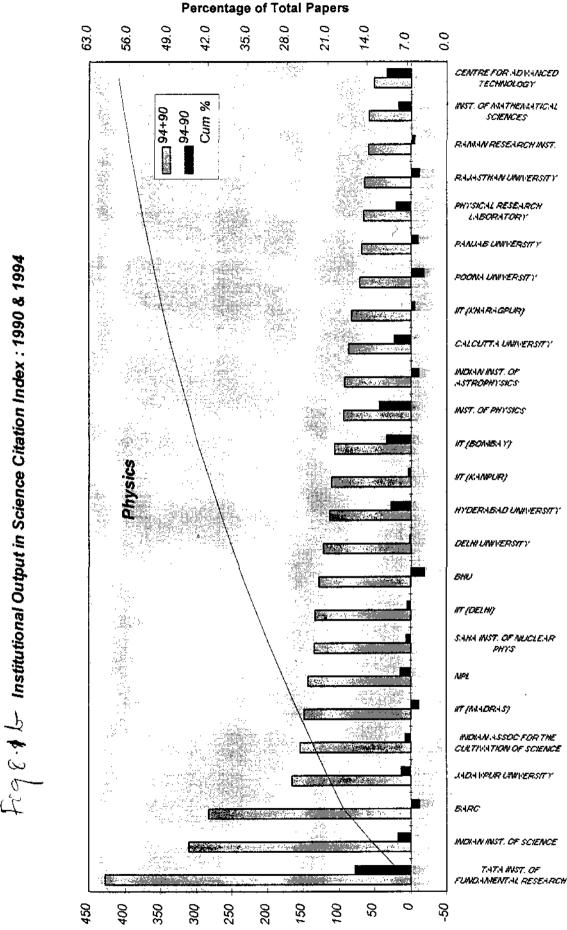
.

Table 8.2b : Categories of Indian Institutions in terms of Output and Impact Factor* 1990

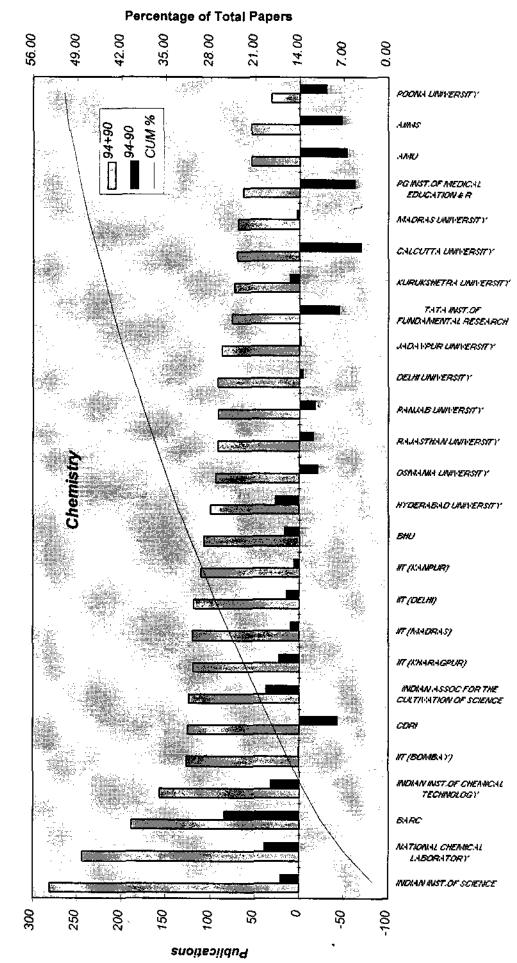
	DEVIATIONS		RANK	ŗ	
	AVERA	GE		ON	
INSTITUTE	PAPERS	AVG_IF	O/P-IF	TOTAL	_
1 INDIAN INSTITUTE OF SCIENCE	. 346	0.210	+ +	1	
2 BHABHA ATOMIC RESEARCH CENTRE		0.210			
	274		++ ++	2	ᆂᅗᆕ
	144	0.642		4	Higher Output & Higher Impact
4 ALL INDIA INSTITUTE OF MEDICAL SCIENCES	64	0.732	++	9	
5 INDIAN INSTITUTE OF TECHNOLOGY (BOMBAY)	41	0.148	++	12	편문
6 PG INSTITUTE OF MEDICAL EDUCATION AND RESEARCH	41	0.086	++	13	ᄨᇶ
7 INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE	36	0.231	++	15	
8 CENTRAL DRUGS RESEARCH INSTITUTE	28	0.077	++	17	
9 NATIONAL CHEMICAL LABORATORY	27	0.335	++	18	
10 INDIAN INSTITUTE OF CHEMICAL TECHNOLOGY	13	0.216	++	19	-
11 BANARAS HINDU UNIVERSITY	199	-0.296	+-	3	
12 INDIAN INSTITUTE OF TECHNOLOGY (DELHI)	101	-0.291	+-	5	
13 DELHI UNIVERSITY	87	-0.101	+-	6	
14 INDIAN INSTITUTE OF TECHNOLOGY (MADRAS)	53	-0.395	+-	7	┍╶┋
16 INDIAN INSTITUTE OF TECHNOLOGY (KHARAGPUR)	69	-0.313	+-	8	ghe
16 JADAVPUR UNIVERSITY	55	-0,166	+-	10	Higher Output & Lower Impact
17 INDIAN INSTITUTE OF TECHNOLOGY (KANPUR)	47	-0.008	+-	11	파란
18 CALCUITTA UNIVERSITY	39	-0.164	+-	14	ŭ, Se Se
19 PANJAB UNIVERSITY	35	-0.055	+-	16	-
20 OSMANIA UNIVERSITY	6	-0.205	+-	20	
21 ALIGARH MUSLIM UNIVERSITY	5	-0.617	+-	21	
22 RAJASTHAN UNIVERSITY	0	-0.465	+-	22	_
23 HYDERABAD UNIVERSITY	-15	0.316	-+	24	
24 POONA UNIVERSITY	-30	0.329	- +	26	5
25 SAHA INSTITUTE OF NUCLEAR PHYSICS	-41	0.281	-+	29	we
26 JAWAHARLAL NEHRU UNIVERSITY	-55	0.052	-+	32	Ģ
27 INDIAN INSTITUTE OF CHEMICAL BIOLOGY	-62	0.468	-+	35	뒃
28 BOSE INSTITUTE	-73	0.594	-+	40	بد م
29 ANNA UNIVERSITY	-75	0.684	-+	41	Lower Output & Higher Impact
30 CHRISTIAN MEDICAL COLLEGE VELLORE ASSOCIATION	-75	0.244	-+	42	jhei
31 PHYSICAL RESEARCH LABORATORY	81	1.081	- +	46	ŝ
32 CENTRE FOR CELLULAR & MOLECULAR BIOLOGY	-100	1,193	- +	48	ipac
33 INSTITUTE OF PHYSICS	- 102	0.882	- +	49	¥
34 SANJAY GANDHI PG INSTITUTE OF MEDICAL SCIENCES	-119	0.097	-+	50	
35 MADRAS UNIVERSITY	-5	-0.314		23	-
36 SRI VENKATESWARA UNIVERSITY	-17	-0.451		25	
37 NATIONAL PHYSICAL LABORATORY	-30	-0.089		27	
38 ROORKEE UNIVERSITY	-31	-0.270		28	
39 PUNIAB AGRICULTURAL UNIVERSITY	-52	-0.617		30	5
40 INTL CROPS RES INST OF SEMI ARID TROPICAL CENTRE	-53	-0.199		31	We
41 NORTH EASTERN HILL UNVERSITY	-59	-0.060		33	ō
42 BOMBAY UNIVERSITY	-59	-0.496		34	ŭţ
43 INDIAN STATISTICAL INSTITUTE	-66	-0.091		36	Lower Output & Lower Impact
44 MADURAI KAMARAJ UNIVERSITY	-70	-0.272		37	2.5
45 INDIRA GANDH CENTRE FOR ATOMIC RESEARCH	-70	-0.275		38	JWE
46 MAHARSH DAYANAND UNIVERSITY	-70	-0.518		39	- n
47 MS UNIVERSITY OF BARODA	-77	-0.323		43	Ipa
47 MS UNVERSIT OF DATULE 48 KURUKSHETRA UNVERSITY	-78	-0.323		43 44	đ
49 CENTRAL FOOD TECHNOLOGICAL RESEARCH INSTITUTE	-78	-0.377 -0.348	••	45 47	
50 REGIONAL RESEARCH LABORATORY (KERALA)	-67	-0.546	••	4/	
TOTAL	6362				-
AVERAGE OUTPUT & IMPACT FACTOR	127.24	1,314			-
	121.24	1,314			

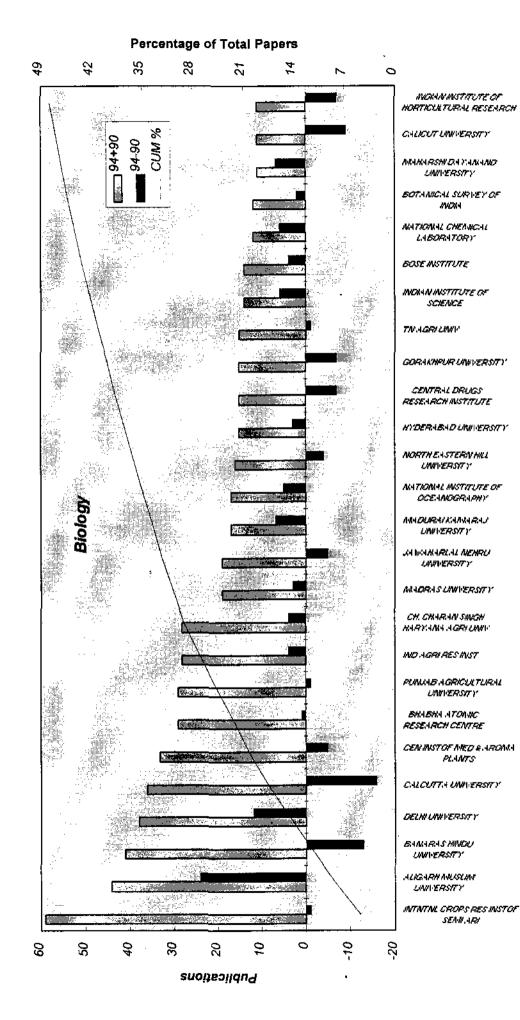

8.4 Graphical Displays

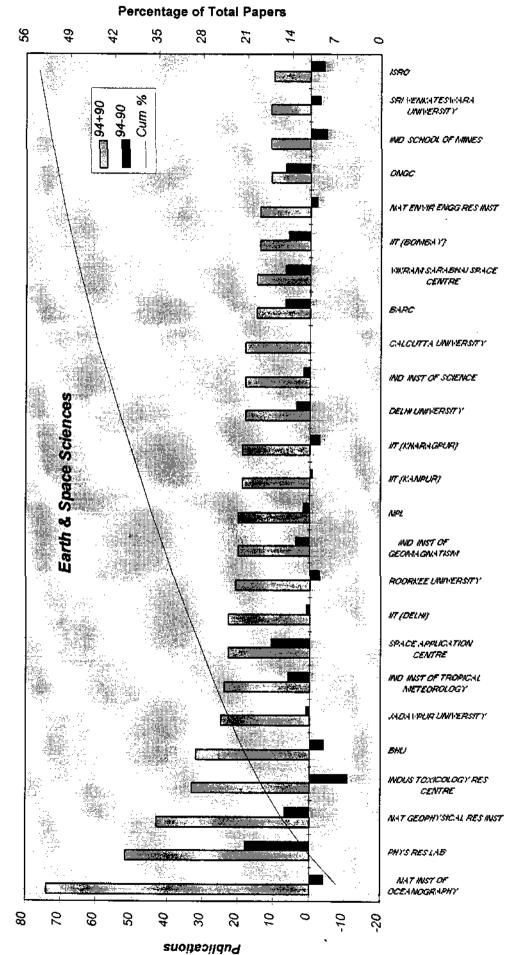
In this section, we have shown the institutions ordered by output in different disciplines, and their growth or decline (in terms of change in output in the 4 year interval .) In order to damp out the effect of year-to-year fluctuations, we have based our calculations on the aggregated data for the years 1990 and 1994. The difference between the output in the 2 years indicates change. Whether this is the effect of fluctuation or an actual trend due to specific causal factors can only be determined by analyzing several years of data. We have also indicated the cumulative percentage of output in any discipline accounted for by these institutions.

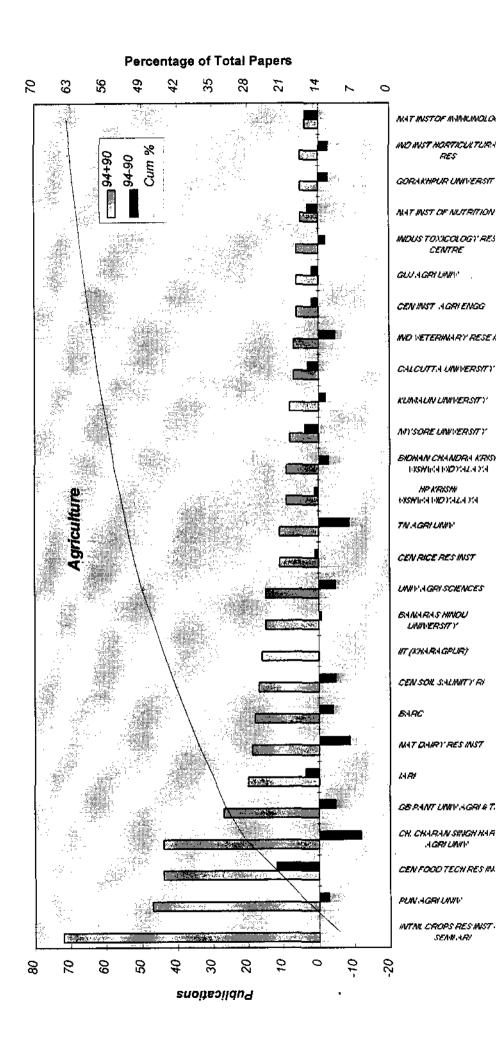

The set of 12 graphs (Fig.8.1a-1) rank the institutions in terms of their combined output in the years '90 and '94, and also show the change in their output in the interval of 4 years. Browsing through the displays generates a feeling for the actual output of any institution and its position within a discipline or field. National Mapping of Science

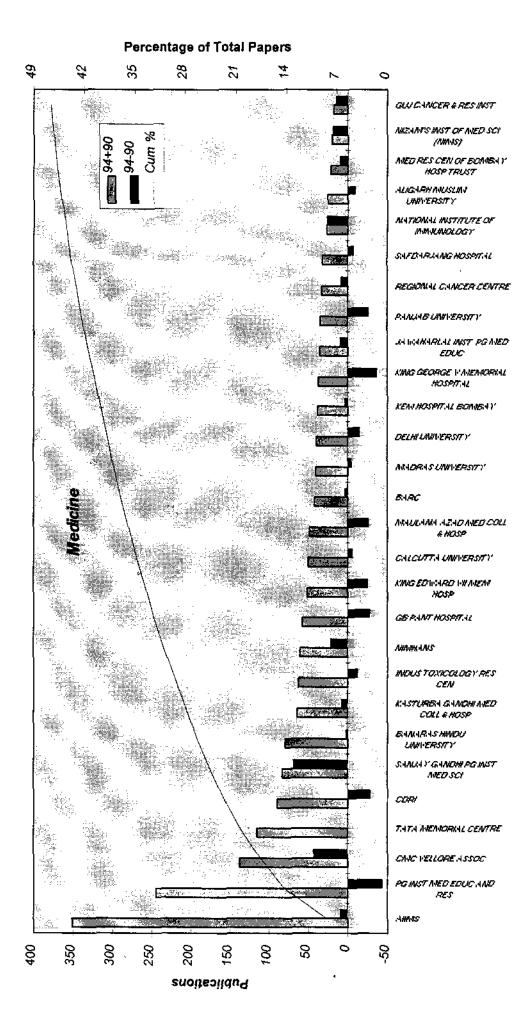
Basn & Nagpaul

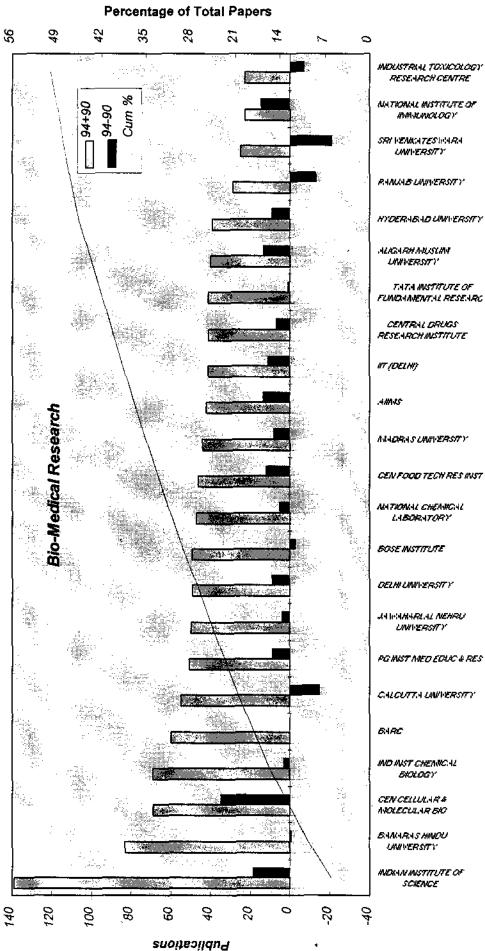

Institutional Output in Science Citation Index : 1990 & 1994

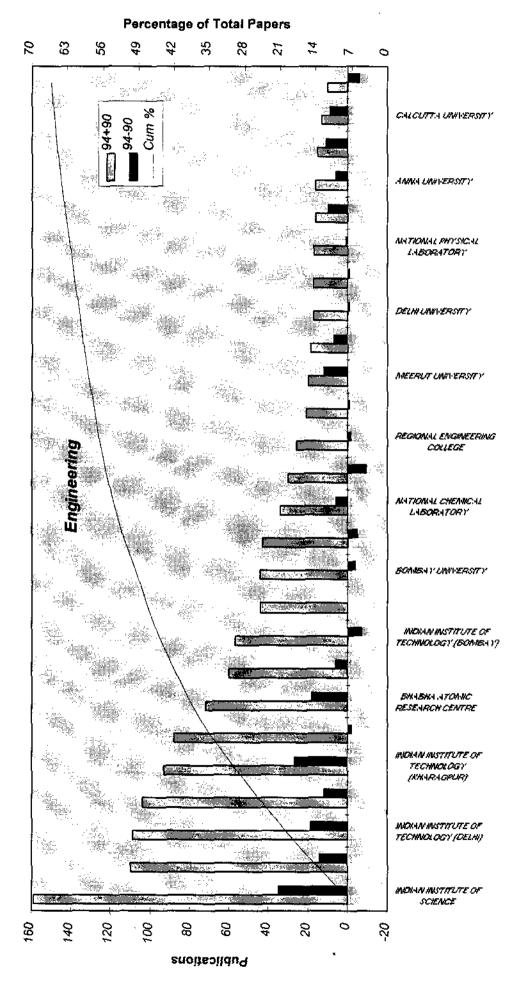


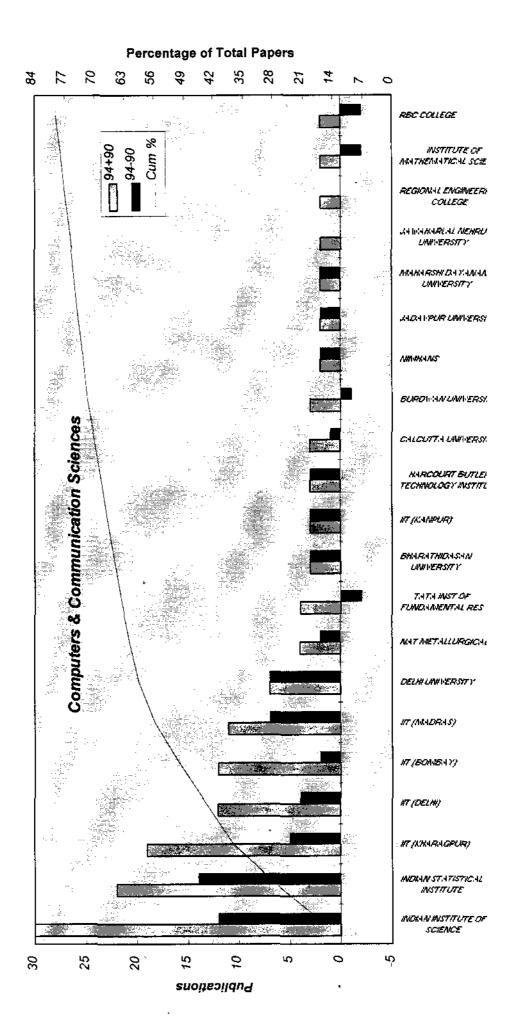

A&477


Publications








PG MIST NED EDUC & RES

National Mapping of Science

ár: % 94+90 94-90 Cum CeS 20 **8**00

Percentage of Total Papers

49

56

70 63 35

28

4

4 ~ 0 NATIONAL INET ALLORGICAL 1.45 DELHILMINERSTY SHRIDHR PHTEL UNIVERSITY ANNER AS LANNERSTY SREE CHITRA TIALMAL INST OF NED SCKS POOMA UNIVERSITY - Sig MATIONAL CHENNICALLAS IT (SOMENT) Ĵ. CENELECTROCHENNCAL RES NIST BHABHA ATOMMC RES CENTRE ģ. SRIVENKATESWARA UNIVERSITY æ, NT (KANPUR) OSMANNA UNIVERSITY

> DEFENCE METALLURGICAL RESLAG

HANNA LAND ERST?

NATIONAL PHYSICAL LAD

ENANARIS MINDU UNIVERSITY

Ç,

Q.

4

è.

5

20

Q

-10

20

MORA GANDHI CENTRE FOR ATOMIC RES

REGIONNI RESLAP

IND ASSOC FOR THE CULTINATION OF SCI

CENALISS & CERIANC RES MST

NT (DELNI)

IT (ANIADRAS)

MT (KRARAGPUR)

IND INST OF SCI

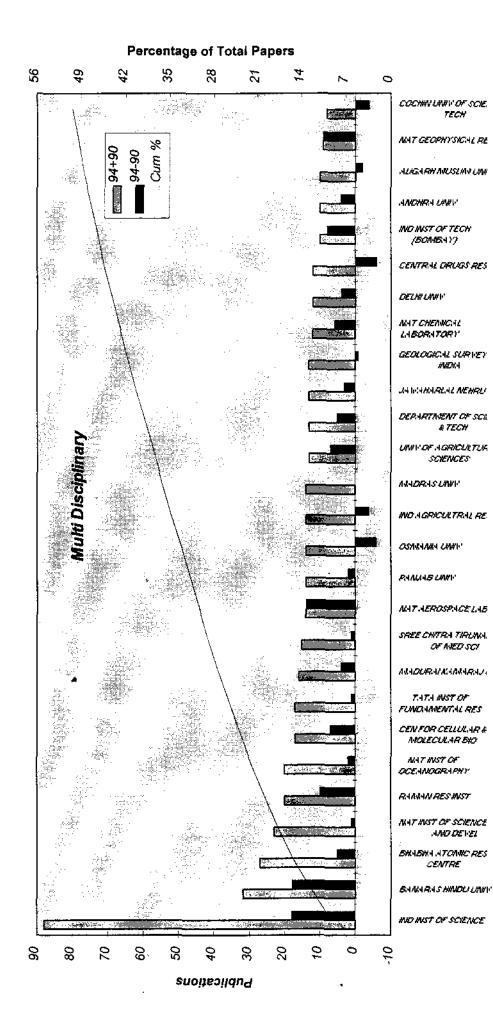
Institutional Output in Science Citation Index : 1990 & 1994

8

2

80

 $\hat{\mathcal{D}}_{i}$


\$

30

enobeoildug

98

91 84 77

9 Collaboration Patterns

The Science Citation Index records the addresses of all authors of a paper. This enables the extraction of both foreign and domestic collaboration patterns. Collaboration is a significant indicator of the nature of scientific activity. In the transition between 'little science' and 'big science' the nature of collaborative activity has changed to some extent from that between individual scientists to one mediated by organizations, or national and international bodies. Thus the number of authors and addresses or countries in a single paper may even exceed a hundred, - a phenomenon not seen in the last decade. While a detailed analysis of these aspects is beyond the scope of this study, one may nevertheless obtain some idea of the frequency of collaboration, collaborating partners, and the changes in both bi-lateral and multi-lateral collaborations in each discipline, within the four year period of our study. From the co-authorship data, it is possible to obtain information on

- 1. foreign collaboration
- 2. inter-state collaboration
- inter-institutional collaboration
- 4. individual collaboration

In this study we have restricted our attention to the first two, reserving the others for another study.

9.1 Foreign Collaboration

Foreign collaboration patterns have been obtained from the country of the respective author addresses in the individual records. It gives an indication of the degree of internationalization in Indian science.

In this section, we have indicated the *volume of collaborative papers*, frequency of collaboration with different countries, break up in the major disciplines, the frequency of *bilateral* (with one foreign country) and *multilateral collaboration* (more than one foreign country), and changes between 1990 and 1994. No comparison has been made of the extent of India's foreign collaboration with that of other countries. This aspect has already been covered in an earlier study on transnational linkages[#].

9.2 Main Features

Analysis of our data on India's joint publications with other countries in the SCI for 1990 and 1994 shows the following main features:

Increase in Foreign collaboration : Out of a total of 10103 papers in 1990, 1334 papers or about 13.2 percent were written in collaboration with at least one author with a foreign address. In 1994, the number increased to 2111 out of a total of 11314 papers, or about -18.7 percent. Collaboration has increased primarily with USA, France, Canada, UK, Australia, Japan, Germany and Italy.

Increase in the number of partner countries : India had joint publications with 70 countries in 1990. By 1994, the number of collaborating countries had increased to 93. The frequency of collaboration with different countries is indicated in Table 9.1. The most frequent collaboration is with the USA, Germany, England, (more than 100 papers each in 1990 and 1994)

<u>Collaboration with the new countries</u>: It is seen that collaborative work with a number of new partner countries has been initiated in 1994 while with certain other countries collaboration has stopped. (Table 9.1)

S.No COUNTRY S.No COUNTRY 1990 1994 1990 1994 1 ARGENTINA 52 TAIWAN 2 10 4 3 2 AUSTRALIA 31 59 53 THAILAND 4 8 **3 AUSTRIA** 5 54 TURKEY 2 3 14 441 611 **4 BAHRAIN** 4 1 **55 USA 5 BANGLADESH** 7 15 **56 VIETNAM** 1 1 6 BELGIUM 11 18 57 WALES 9 7 7 BRAZIL 21 58 ZAMBIA 1 2 7 8 BRUNEI **59 AFGHANISTAN** 1 5 1 9 BULGARIA 7 7 60 ARABIA 1 74 61 BERMUDA 1 10 CANADA 122 11 CHILE 3 8 62 INDONESIA 1 12 CZECHOSŁOVAKIA 4 1 63 KUWAIT 4 64 PAPUA-N-GUINEA 2 13 DENMARK 7 q 14 EGYPT 3 7 65 PORTUGAL 1 4 169 66 ZIMBABWE 15 ENGLAND 119 16 ETHIOPIA 2 3 67 YUGOSLAVIA 1 **68 USSR** 25 17 GERMANIES 135* 204 69 FINLAND 5 18 FRANCE 52 109 19 GREECE 5 9 70 ALGERIA 1 71 ARMENIA 3 20 HONG-KONG 3 2 21 HUNGARY 14 15 72 BYELARUS 2 6 22 IRAN 3 2 73 COLOMBIA 2 23 IRAQ 2 74 CONGO 1 24 IRELAND 1 4 75 COSTA-RICA 1 3 76 CYPRUS 4 25 ISRAEL 8 77 CZECH-REPUBLIC 4 26 ITALY 52 85 27 JAPAN 73 125 78 FINLAND 14 28 JORDAN 3 1 79 GHANA 1 6 80 JAMAICA 1 29 KENYA 1 2 3 30 LIBYA 3 81 KAZAKHSTAN 31 MALAYSIA 1 7 82 LEBANON 1 32 MEXICO 5 6 83 LESOTHO 1 33 NEPAL 1 3 **84 LUXEMBOURG** 1 34 NETHERLANDS 29 32 **85 MAURITIUS** 1 35 NIGERIA 11 10 86 MONACO 1 36 NORTH-IRELAND 3 17 87 MOROCCO 2 7 11 37 NORWAY 4 88 NEW-ZEALAND 89 REP-OF-GEORGIA 38 OMAN 1 3 1 **39 PAKISTAN** 3 4 90 RUSSIA 52 40 PEOPLES-R-CHINA 19 22 91 SLOVAKIA 4 **41 PHILIPPINES** 5 7 92 SLOVENIA 1 42 POLAND 6 14 93 SOUTH-KOREA 12 43 ROMANIA 3 7 94 SRI-LANKA 3 44 SAUDI-ARABIA 2 3 95 SUDAN 1 45 SCOTLAND 12 20 96 SURREY 1 97 TANZANIA 46 SINGAPORE 3 5 2 47 SOUTH-AFRICA 4 10 98 TUNISIA 3 48 SPAIN 21 27 99 U-ARAB-EMIRATES 7 49 SWEDEN 20 31 100 UKRAINE 1 50 SWITZERLAND 37 32 101 UZBEKISTAN 4 102 YEMEN 51 SYRIA 12 1

able 9.1 : Frequency of India's foreign Collaboration in 1990 & 1994

* FRG - 126; GDR - 9

1

.

9.3 Foreign Collaboration in the Major Disciplines

Foreign collaboration has increased as a proportion of total publications in every discipline except *Computers* and *Engineering*. In Tables 9.2 we have shown the number of collaborative papers in the different disciplines with their respective partner countries.

[The field with the highest proportion of papers with foreign collaboration in 1990 was Computers and Communication (~30%). In 1994, the highest proportion was in Mathematics, about one third of all the papers being written with foreign collaboration.

The areas in which the highest number of internationally co-authored papers were published were Physics, Clinical Medicine, Chemistry and Biomedical Research in both years (Table 9.2)

<u>As a proportion of total output</u>, *Physics*, followed by *Mathematics* and *Computers* are the areas of high foreign collaboration in 1994. The order has been reversed since 1990. (Table 9.-2a,b)

<u>Average Impact Factor</u> of papers written in collaboration with an author from a foreign country is higher (2.06) as compared to the national average (1.33). The differences in IF ratings of papers in collaboration with different countries has not been examined in this study.

<u>The change in foreign collaboration</u> in different disciplines in the period 1990 to 1994 are shown in Fig.9.1a and in the Change Matrix, Table 9.2c for a set of selected countries. Collaboration has increased markedly with France (109.6%), Australia (90%), Japan (71%) and Belgium, Canada, Germany, Italy (all > 60%).

COUNTRY	CODE	CHEM	PHYS	MEDI.	BIOMED	ENGG	BIO	MULTI	EARTH	MATER.	AGRI	MATHS	COMP.	TOTAL
PAPERS		2480	2438	1761	1150	912	556	551	504	376	284	189	113	11314
USA	USA	71	191	89	79	36	36	16	29	13	8	19	14	611
GERMANY	DEU	26	_93	22	18	10	9	7	8	4	3	3	1	204
ENGLAND	UKD	18	48	46	19	3	10		8	8	6	2	1	169
JAPAN	JPN	18	35	16	21	3	8	5	10	4	2	2	1	125
CANADA	CAN	8	44	14	11	9	8	1	8	1	1	14	3	122
FRANCE	FRA	15	56	11	6		6	2	8	4	1			109
ITALY	ITA	16	45	3	5	5	2	1	1	2		5		85
AUSTRALIA	AUS	9	11	14	2	5	5	1	1		9	2		59
RUSSIA	SUN	4	28	2	4			1	13					52
NETHERLANDS	NLD	2	14	4	5	2			1		3	1		32
SWITZERLAND	CHE	5	14	8	3	1						1		32
SWEDEN	SWE	3	12	6	5	3			1		1			31
SPAIN	ESP	1	17	3	2		1		1	2				27
BRAZIL	BRA		17	2	1		1							21
PEOPLES-R-CHINA	PRC		13	4	2		2							21
SCOTLAND		4	5	5	3	1	1				1			20
BELGIUM	BEL		6	5	3		3		1					18
NORTH-IRELAND		1	12		4									17
BANGLADESH	CIK	1	3	3	4	2	1					1		15
HUNGARY	HUN '	3	5	1	2	2						1	1	15
AUSTRIA	AUT	4	4	3	1	1	1							14
FINLAND	FIN	2	8	2				1	1					14
POLAND	POL		7	3	1		3							14
SOUTH-KOREA	KOR	1	6	2					1	1		1		12
SYRIA.	SYR						8	1			3			12
NEW-ZEALAND	NZL	1	5			2	1	1	1					11
NIGERIA	NGA	2	1	4	1	1							1	10
SOUTH-AFRICA	ZAF		5	4	1									10
TAIWAN	TWN	1	3	2	3	1								10
OTHERS		0	0	Q	0	0	0	O	0	0	0	0	0	0
TOTAL		216	708	288	206	87	106	37	93	39	38	52	22	1892
% FOREIGN COLLAB.		8.7%	29.0%	16.4%	17.9%	9.5%	19.1%	6.7%	18.5%	10.4%	13.4%	27.5%	19.5%	16.7%
AVG. IMPACT FACTOR		2.059												

Table 9.2a: 'NUMBER OF INDIAN PAPERS CO-AUTHORED WITH FOREIGN COLLABORATORS : 1994

.

COUNTRY	CODE	CHE	РНҮ	MED	BMD	ENGG	BIO	MUL	GEO	AGR	MTL	MAT	СОМ	TOTAL
PAPERS		2359	2189	1676	879 -	705	565	416	388	363	340	168	51	10099
USA	USA	68	137	52	50	27	20	9	23	15	14	16	10	441
FED-REP-GER	DEU	12	56	10	16	7	7	2	4	5	3	3	1	126
ENGLAND	UKD	11	29	37	5	8	10		6	4	6	3		119
CANADA	CAN	11	27	4	3	9	6		6		1	4	3	74
JAPAN	JPN	16	18	5	2	5	11	1	10	1	3	1		73
FRANCE	FRA	6	26	4	4	1	4	1	2	1		2	1	52
ITALY	ITA	1	42	2	2	2			2	1				52
SWITZERLAND	CHE	1	21	8		4				1		2		37
AUSTRALIA	AUS	7	9	2		2	3	1	3	2		2		31
NETHERLANDS	NLD	1	16	2	2		1		1		1	5		29
USSR	SUN	5	14		1			1	3			1		25
SPAIN	ESP	4	10	3							3	1		21
SWEDEN	SWE		7	9	1		1		1	1				20
PEOPLES-R-CHINA	PRC	2	13	1		1					2			19
HUNGARY	HUN	4	8			1		1						14
SCOTLAND			8		2		1					1		12
BELGIUM	BEL	1	4	1			2	1	1			1		11
NIGERIA	NGA	1	1	2		<u></u>	1			6				11
OTHERS		0	0	0	0	0	0	D	0	0	0	0	0	0
TOTAL		151	446	142	88	67	67	17	62	37	33	42	15	1167
% FOREIGN COLLAB.		6.4%	20.4%	8.5%	10.0%	9.5%	11.9%	4.1%	16.0%	10.2%	9.7%	25.0%	29.4%	11.6%
AVG. IMPACT FACTOR		1.920												

Table 9.2b; 'NUMBER OF INDIAN PAPERS CO-AUTHORED WITH FOREIGN COLLABORATORS : 1990

COUNTRY	CODE	СНЕМ	PHYS	MEDI.	BIOMED	ENGG	BIO	MULTI	EARTH	AGRI	MATER.	MATHS	COMP.	TOTAL
PAPERS		121	249	85	271	207	-9	135	116	13	-56	21	62	1215
AUSTRALIA	AUS	2	2	12	2	3	2	0	-2	7		0		28
BELGIUM	BEL	- 1	2	4	3		1	-1	0	,		-1		7
CANADA	CAN	-3	17	10	8	0	2	1	2	1	0	1¢	0	48
EŃGLAND	UKD	7	19	9	14	-5	0		2	2	2	-1	1	50
FRANCE	FRA	9	30	7	2	-1	2	1	6	0	4	-2	-1	57
GERMANY	DEU	14	37	12	2	3	2	5	4	-2	1	0	0	78
HUNGARY	HUN	-1	-3	1	2	1		-1				1	1	1
ITALY	ITA	15	3	1	3	3	2	1	-1	-1	2	5		33
JAPAN	JPN	2	17	11	19	-2	-3	4	0	1	1	1	1	52
NETHERLANDS	NLD	1	-2	2	3	2	-1		0	3	-1	-4		3
NIGERIA	NĢA	1	0	2	1	1	-1			-6			1	-1
PEOPLES-R-CHINA	PRC	-2	0	3	2	-1	2				-2			2
SPAIN	ESP	-3	7	0	2		1		1		-1	-1		6
SWEDEN	SWE .	3	5	-3	4	Э	-1		0	0				11
SWITZERLAND	CHE) '	4	-7	0	3	-3	2	-		-1		-1		-5
USA	USA	3	54	47)	29)	(9)	16)	G	6	-7	-1	3	4	170

.

Table 9.2c Change Matrix for International Collaboration (1994-1990)

i

9.3.1 Country of Collaboration:

The frequency of collaboration with different countries varies with the discipline. In Table 9.3 we have shown the partner countries with the largest number of collaboration, by field of activity.

Discipline	Countries with high collaboration
Mathematics	USA, Canada
Physics	USA, Germany, France, England, Italy, Canada, Japan, Spain, Brazil, Russia, Netherlands, China, Ireland
Chemistry	USA, Germany, UK
Biology	USA, England, Germany
Agriculture	Australia, USA, UK
Earth & Space Science	USA, Russia, Japan
Clinical Medicine	USA, UK, Germany
Biomedical Research	USA, Japan, England, Germany
Engineering & Technology	USA, Germany, Canada
Materials Science	USA, England
Computers	USA, Canada
Multidisciplinary	USA, Germany, Japan

Table 9.3a -Countries collaborating with India in different Disciplines (1994)

1

<u>Collaboration with the Third World</u>: It is seen that collaborative work with a number of partner countries including those from the third world has been initiated by 1994.

The interaction level with some of the countries of the South Asia region are shown below

Country	1 990	1994
Australia	31	59
Bangladesh	7	15
Hong Kong	3	2
Malaysia	1	7
Nepal	T	3
Pakistan	3`	4
People's rep China	19	21
Philippines	5	7
Singapore	3	5
Thailand	4	8
Indonesia	1	0
Vietnam	1	1
Papua New Guinea	2	0
Mauritius	0	1
South Korea	0	12
Sri Lanka	0	3
Total	81	168

Table 9.3b Collaboration with South Asian Cou	ntries
---	--------

We find that our co-operation with South Asian countries has doubled in four years.

9.3.2 Bilateral and Multilateral Collaboration :

We expect that there are organizational differences between collaborative efforts between authors in two countries which are likely to be based on individual initiative, and those involving several countries which may be the result of institutional or international initiatives. Thus the number of bilateral or multilateral collaborations may be indicative of these kinds of research co-operation.

The actual number of bilateral collaborations has increased in every discipline. The change in the number of bilateral collaborations between 1990 and 1994 has been highest in Physics, while the largest change in multilateral collaborations has been in Biology, Earth & Space Sciences, Engineering and Technology and Materials Sciences (Fig-9.1b, Table 9.4)

Disciplines	Bilateral '90	Bilateral '94	Multilateral '90	Multilateral '94
Mathematics	34	42	6	6
Physics	254	409	66	105
Chemistry	139	192	12	18
Biology	71	74	2 <	19
Earth & Space Sc	50	63	6	11
Agriculture	36	38	5	5
Clinical Medicine	116	180	16	40
Biomedical Res.	87	148	4	27
Engg. & Tech.	67	86	7	6
Computers& Co	12	23	2	2
Mater. Sci	25	35	5	3
Multidisciplinary	18	29	ł	4
Total	909	1319	132	246

Table 9.4: Bilateral and Multi-lateral Collaborations in the Major Disciplines

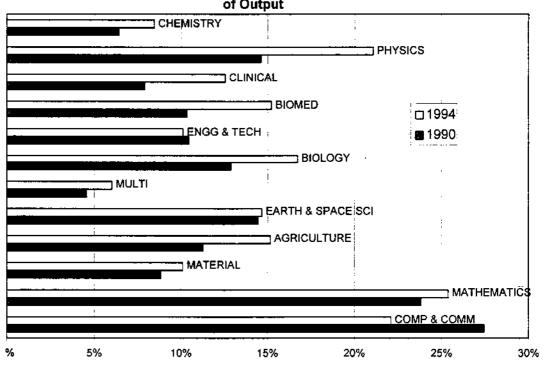
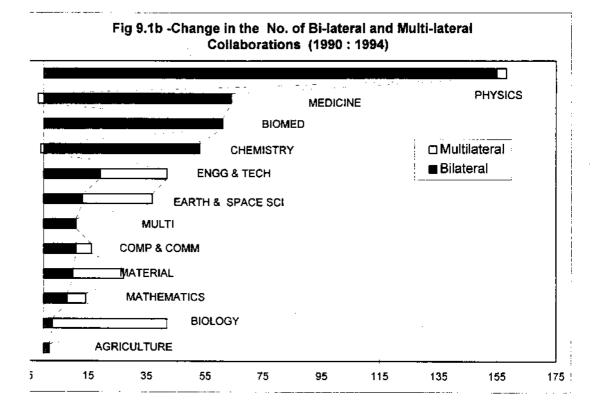



Fig 9.1a Foreign Collaboration in Major disciplines as a Percentage of Output

We reproduce here a relevant table on foreign collaboration from Chapter. 1

Table 9.4 a :Foreign collaboration in Indian publications An Overview

		<u>1990</u>	<u>1994</u>	%change
1.	No. of internationally co-authored papers	64T	1584	144.0%
2.	No. of bilateral collaborations	509	1311	155.6%
3.	No. of multilateral collaborations.	132	253	91.7%
4.	No. of partner countries	70	93	32.86%

Disciplines	1990	% of total output	1994	% of total output	partner countries '94
Mathematics	50	29.8	54	28.6	USA
Physics	500	22.8	782	32.1	USA, GER, UK
Chemistry	165	7.0	228	9.2	USA,GER
Biology	78	13.8	130	23.4	USA,UK
Clinical Medicine	169	10.1	343	19.5	USA, UK, GER
Biomedical Sciences	97	11.0	220	19.1	USA, JAP, UK
Computer Sciences	17	333	27	23.9	USA
Engineering	83	11.8	98	10.7	USA, GER, CAN
Materials Science	35	103	47	109	USA, UK
Earth Sciences	72	18.6	100	19.8	USA, RUS, JAP
Agriculture	47	12.9	48	16.9	USA, AUS, UK
Multidisciplinary	21	5.0	40	7.3	USA, GER, JAP
Total	1334	13.2%	219	18.7	USA, GER, UK

Table 9.4 b : Foreign collaboration in major disciplines.

We conclude that foreign collaboration has increased, in particular collaboration with South Asian countries (including Australia) has doubled in 4 years.

9.4 Inter-State Collaboration

Inter-State collaboration patterns may be obtained from the co-authorship details in the individual records. We give a brief overview of the extent of inter-state collaboration in India in Table 9.5. The number of collaborative links between states is indicated in Tables 11.1 and 11.2. The network of links and changes between 1990 and 1994 have been analysed in Chapter 11 using the techniques of Network Analysis.

Disciplines	No.of Articles	Intn'l Collabs	Inter- State	India (I/P) %	India \$/P) %	World Levels of Intn'l Collab %
	(P)	(1)	Collabs (S)	1 994	1994	1990
Mathematics	189	47	10	24.9	5.3	16.5
Physics	2438	496	232	20.3	9.5	12
Chemistry	2480	207	131	8.3	5.3	7.5
Biology	556	93	38	16.7	6.8	8
Earth & Space Sciences	504	78	67	15.5	13.3	14
Agriculture	284	43	12	15.1	4.2	-
Clinical Medicine	1761	223	94	12.7	5.3	7
Biomedical Research	1150	173	68	15.0	5.9	9.5
Engg & Technology	912	91	92	10.0	10.1	8
Computer Science	113	25	6	22.1	5.3	-
Materials Science	376	37	31	9.8	8.2	-
Multi Disciplinary	551	32	30	5.8	5.4	-
						-
Total	11314	1545	811	13.7	7.2	-

Table 9.5: Indian Publication Output and Interstate Co-operation in Science Fields

In every discipline the degree of international collaboration is higher than world averages. The highest level of international collaboration are in the fields of *Mathematics*, *Physics* & *Computer Science*. Every fourth paper has a foreign co-author in *Mathematics*. The highest *inter-state collaboration* is in the areas of *Earth & Space Science*, *Engineering & Technology*, *Physics* (≥ 1 in 10 papers).

.

10 A Structural Analysis of Research Output

This chapter seeks to analyze: The structure of the system of multivariate relationships between states and fields of research performance for two tune years: 1990 and 1994.

10.1 Structure of Research Output

10.1.1 1990 Data

Tables 10.1 and 10.2 present respectively the distribution of articles in 28 states and 11 research fields for 1990 and 1994. However, these data sets do not convey much information for the following reasons:

- (i.) The sheer size of such data sets blur the overall structure and their hidden features 1.
- (ii.) The raw counts of articles are confounded by the size of the states and scientific fields².

Moreover, these data sets have inbuilt redundancy due to the attribution of coauthored articles to the state of each other. There is also 'noise' in the data due to any misattribution of articles to the states (due to incomplete or wrong addresses of authors) and any misclassification of articles into scientific fields. It my be pointed out that the classification of articles is based on the *SCI* classification of journals into various disciplinary areas which have been aggregated into non- overlapping categories – 11 scientific fields plus one, unidentified category 'multidisciplinary'. Hence, it is essential that the analytical schema for structural analysis should cope up with the problems of noise and redundancy in the data.

×	
Ū.	

Table 10.1 : Publication Output (6) States in Different Disciplines - SCI Data 1990

STATES	MATHS	PHYS	CHEM	BIO	EARTH	AGRI	MED	BIOMED	ENGG	COMP	MTL	MLLTI	τοτ	AVG_IF
	٦							_						-
APR	13	156	306	56	42	50	51	91	60		39	36	900	1.204
ARN			5	1									6	0.676
ASM	1	23	24	3	2	3	2	4	2		1	1	65	1.007
BiH		24	14	10	14	7	11	9	24	1	5	4	123	0.799
CHID	3	25	39	8	5	4	17 1	46	5			10	316	1.301
Del	19	217	134	50	38	14	363	94	78	6	39	55	1107	1.323
GOA	1	4	1	6	4 1	1	3	2	3			9	70	1.196
GW	5	56	82	14	34	9	36	20	2		12	13	283	1.203
HAR	1	24	70	20	6	53	24	17	9		1	7	232	0.792
HM	1	8	8	9	1	11	16	6	2			4	66	1.028
J&K	1	10	14	14	2	2	20	13	1			5	81	1.330
KAR	27	257	163	37	18	39	98	110	85	12	32	78	956	1.266
KER	2	49	70	24	15	13	48	12	15	1	26	25	300	0.955
MAP	1	45	65	12	9	4	28	21	7		2	8	202	0.893
ман	41	424	427	32	39	26	303	109	116	10	39	41	1607	1.553
MAN		1 9	4	2		1		2			1		29	0.786
MEG	1	24	29	12	2	1	1	1	1			3	75	1.199
MIZ			2									1	3	0.335
ORI	1	54	51	14	6	7	9	11	12		4	2	171	1.197
PON	1	5	10	5			29	6	1		1	1	59	0.663
PNJ	3	31	42	17	1	27	33	13	4		2	5	178	0.864
RAJ ·	3	52	81	16	6	7	31	5	20		3	10	234	1.007
TAM	11	216	152	37	10	21	153	54	94	9	50	34	841	1.217
गरा	1		1	2									4	0.550
UPR	16	249	354	128	95	65	248	131	156		42	57	1541	1.024
WEN	25	385	283	63	44	18	91	134	77	16	62	22	1220	1.262
TOTAL	175	2357	2431	592	430	383	1769	911	774	55	361	431	10669	1.2160

*- Redundancy Factor = 5.60

STATE	MATHS	PHYS	СНЕМ	BIO	EARTH	AGRI	MEDICINE	BIOMED	ENGG	СОМР	MTL	MULTI	тот	TOTAV_IF
AND	-	4	1		-		-							
AND APR	4	1 174	261	2	2		7	400	1	ò	00	45	14	0.587
	4		201	82	65	46	90	123	61	3	39	45	993	1.481
ARN		2				_			2			<u>,</u>	4	1.986
ASM	2	16	26	4	3	3	4	9	6		1	3	77	0.709
BIH	1	17	10	7	12	2	11	11	27	3	11	7	119	0.972
CHD	3	38	39	3	7	1	119	54	5		_	12	281	1.587
DEL	39	251	142	69	56	23	362	157	95	16	37	65	1312	1.544
GQA	2	1	6	12	34		5	3	4			12	79	1.053
GM	2	90	107	10	66	6	53	21	16		6	15	392	1.268
HAR		23	78	25	9	21	. 28	16	15	2	3	9	229	0.866
нім	2	9	8	11	1	8	1	4	1 ·		1	1	47	0.784
<u>ј к</u>		17	6	4	9	2	16	6			4	4	68	0.877
KAR	17	278	223	36	31	49	127	165	134	22	59	134	1275	1.467
KER	4	45	8 6	19	25	8	62	22	28		24	17	340	1.118
MAP	3	97	69	14	11	6	42	36	20	1	10	11	320	1.1
MAH	43	533	509	45	71	t 1	269	142	144	13	45	79	1904	1.574
MAN		7	4		2	1	4	2				1	21	0.6
MEG	ł	24	24	7	2	2		9				3	71	0.999
MIZ		1					1						2	0.38
ORI	5	92	56	8	6	7	22	10	14		1	3	224	1.338
PON		3	10	6	4		34	5	1		1	1	65	1.689
PNJ .	2	27	30	16	5	32	22	29	7		1	2	173	0.959
RAJ	2	45	5 7	12	3		35	8	10	2	5	7	186	1.203
sıK								1					1	0.517
TAM	23	227	239	55	22	14	213	94	127	13	66	51	1144	1.147
TRJ		1	2	2		1	_ · ·			-	-	1	8	0.59
UPR	26	226	322	107	88	33	234	148	187	11	33	86	1501	1.177
WBN	23	455	306	41	47	22	114	145	104	34	61	21	1373	1.256
TOTAL	203	2700	2621		582	298	1875	1220	1009	120	408	590	12223	1.333

Table 10.2 : Publication Output for States in Different Disciplines SCI Data 1994

Redundancy Factor = 7.99

.

According to Engelsman & van Raan (1994), a cartographic approach to structural analysis not only reformats the data into a specific graphs representation (i.e. maps), it also accomplishes data reduction while retaining the essential information. Correspondence analysis is a high-performance cartographic technique, which can achieve appropriate data reduction, minimize the effects of redundancy, filter out noise within the data set and objectify correlations among the variables.

The structure of the system of the multivariate relationships between twenty four states and eleven scientific fields was analyzed through correspondence analysis, using the computer program SimCA. Four states (Arunachal, Andaman, Mizoram, Sikkim) which had many empty cells were excluded from the analysis. The field of *Computer Science*, for which there were many empty cells, was treated as a supplementary variable. Supplementary variables do not have any influence on the determination of factorial axes, but their coordinates and relative contributions to the eccentricities of the axes ($\cos^2\phi$) are computed by the program. As a result of correspondence analysis, each field in the high – dimensional space is projected into the low– dimensional subspace of 24 states whereas each state is projected into the low– dimensional subspace of eleven fields.

The chi – square statistic computed by program ($\chi^2 = 2767$; d.f. = 207) is highly significant, which means that the association between states and research fields is not random.

The results of correspondence analysis are summarized in Tables 10.3 and 10.4.

Eigen values issued by the correspondence analysis indicate that the total inertia ($\Sigma\lambda_i = 0.272001$) is large, indicating large variations in the amplitudes of profiles of states and fields.

The first three axes $\phi_1 - \phi_3$, indicating about 79% of the total variance (τ) in the multidimensional system, yield the most parsimonious representation of the data. The remaining axes, accounting for successively smaller amounts of variance, represent information of an idiosyncratic nature, which does not have much bearing on the basic

structure of the multidimensional system. The first two axes, accounting for about 60% of the total variance, represent the essential features of the system; the third axis accounting for 18.7% of the total variance provides complementary data for further analysis and elaboration. Figure 10.1 presents the two dimensional factorial map spanned by the first two factorial axes.

Factor ϕ_1 : The first factorial axis, accounting for 34.2% of the total variance, represents the most important element of the structure of the multidimensional system.

On the cloud of fields, this factor is characterized by the polarity between *Clinical Medicine* and *Chemistry*. *Clinical Medicine* is almost entirely represented on this axis whereas *Chemistry* represented on the first and fourth axis.

The states projected on this axis can be classified into two clusters, depending upon the signs of their coordinates of projection.

Cluster 1: Chandigarh, Delhi, Pondicherry and J&K

Cluster 2: Andhra, Assam, Orissa and Meghalaya

Cluster 1 states, projected with positive coordinates, are correlated to *Clinical Medicine*, whereas *Cluster* 2 states, projected with negative coordinates, are correlated to *Chemistry*. This means that *Cluster* 1 states publish preferentially in *Clinical Medicine*, whereas *Cluster* 2 states publish preferentially in *Clinical Medicine*, whereas

Factor ϕ_2 : This axis accounts for 24.8% of the total variance and constitutes the second most important element of the data structure. On the cloud of fields this factor is characterized by the polarity between Agriculture, Biology and Earth & Space Science on the one hand and Physics on the other.

The states projected on this axis can be classified into two clusters, depending upon the signs of their coordinates of projection.

Cluster 1: Goa, Haryana, UP and J&K

Cluster 2: Karnataka, Kerala, Maharashtra, West Bengal and Tamilnadu.

Table10.3 Contribution	ts of explicative point	ints to the	comp	osition of j	factorial axes (C	Ctr)* (Resear	ch output)	
Cloud	Explicative p coordinates	ooints v	with _	positive	Explicative coordinates	points	with no	egative
		Axis 1 (λ ₁ = ().090431,	τ ₁ = 33.25%)			
Fields	Clinical Medic	cine (658)		Geosciences ((173)		
States	Chandigarh (Pondicherry (4	• • • •	Delhi	(231),	Andhra (95),	Goa (124)		
		Axis 2 ($\lambda_2 = 0$).072721,	$r_2 = 26.74\%)$			
Fields	Physics			(106),	Geosciences Clinical Medi	icine (101)		(709)
States	Karnataka (37))			Goa (629), Ul	P (39)		
	2	Axis 3 (λ3 = 0).050833,	r3 = 18.69%)			
Fields	Physics (179)				Agriculture (6	516)		
States	West Bengal (1	111)			Haryana (444 Punjab (146)	4), Himacł	nal Pradesł	(84),

* Values are in permills

Contribution Cloud	ens of explained points to Explicative point			Explicative	s²ø)* (Rese points	earch out _j with	put). negative
	coordinates			coordinates			
	Axis	$l(\lambda_1 = 0$.090431, 1	n = 33.25%)			
Fields	Clinical Medicine (871)		Chemistry (3	15)		
States	Chandigarh (800 Pondicherry (785)), Deihi	(830),	Andhra (624 (274) Meghalaya (2			-
	Axis	2 ($\lambda_2 = 0$.072721, z	₂ = 26.74%)			
Fields	Physics (353)			Geosciences (739)			
States	Karnataka (319)			Goa (767), G	ujarat (3 [,]	47), UP ((333)
	Axis	3 (<i>λ</i> 3 = 0	.050833, 1	3 = 18.69%)			
Fields	Physics Computers (317)		(415)	Agriculture			(778)
States	West Bengal (393)			Haryana (8 (809), Punjab (871)		imachal	Pradesh

* Values are in permills

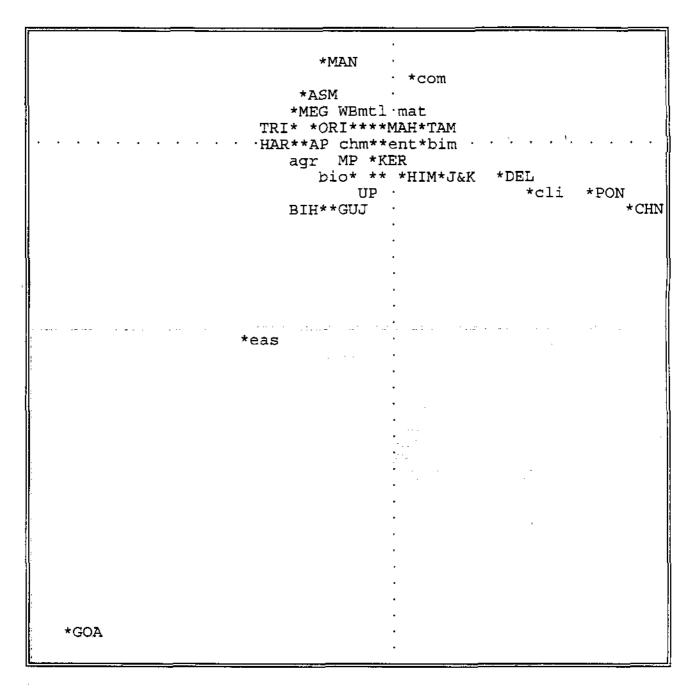


Fig. 10.1: Correspondence analysis map of research profile for 1990

Horizontal axis is dimension 1 with inertia = 0.0904 (33.2%). Vertical axis is dimension 2 with inertia = 0.0727 (26.7%) 60.0% of total inertia is represented in the above map *Cluster* 1 states, projected with positive coordinates, publish preferentially in *Biology*, *Agriculture*, and *Earth & Space Science*, whereas *Cluster* 2 states, projected with negative coordinates, publish preferentially in *Physics*.

Factor ϕ_3 : This factorial axis accounts for 17.8% of the total variance in the multidimensional system. Figure 10.2 presents the two – dimensional factorial map spanned by ϕ_1 and ϕ_3 axes.

On the cloud of fields, this axis is characterized by the polarity between Agriculture and Earth & Space Science. These two fields are associated on the second axis, but they are opposed on the third axis. However, association or opposition on the third axis is less pronounced than that on the second axis, since the third axis accounts for less variance than the second.

On the cloud of states, this axis is characterized by the polarity between Haryana, Himachal and Punjab on the one hand, and Gujarat and Goa on the other. Haryana, Himachal and Punjab are correlated to *Agriculture*, whereas Gujarat and Goa are correlated to *Earth & Space Science*.

10.1.2 1994 Data

The data matrix for 1994 was submitted to the correspondence analysis algorithm. Four states (Arunachal, Andaman, Mizoram, Sikkim) which had many empty cells were excluded from the analysis. The field of *Computer Science*, for which there were many empty cells, was treated as a supplementary variable.

The chi – square statistic computed by program ($\chi^2 = 4675.51$; d.f. = 207) is highly significant, which means that the association between states and research fields is not random.

The results of correspondence analysis are summarized in Tables 10.5 and 10.6.

Eigen values issued by the correspondence analysis indicate that the total inertia ($\Sigma\lambda_i = 0.203425$) is large, indicating large variations in the amplitudes of profiles of states and fields.

Fig. 10.2: Correspondence analysis map of research profiles for 1990

Horizontal axis is dimension 3 with inertia = 0.0508 (18.7%) Vertical axis is dimension 4 with inertia = 0.0183 (6.7%) 25.4% of total inertia is represented in the above map

Table10.5				
Contributions of explicative points to the composition	of factorial axe	s (Ctr)* (Rese	arch output)	

Cloud	Explicative points with positive coordinates	Explicative points with negative coordinates				
	Axis 1 ($\lambda_1 = 0.055512$,	$, \tau_1 = 27.29\%)$				
Fields	Clinical Medicine (589)	Physics (190), Chemistry (119)				
States	Chandigarh (207), Delhi (277), Pondicherry (96)	Maharashtra (45), Orissa (39), West Bengal (146)				
	Axis 2 ($\lambda_2 = 0.054350$,	, $\tau_2 = 26.72\%)$				
Fields	Biology (166), Earth & Space Science (451), Agriculture (147)	Physics (103), Clinical Medicine (101)				
States	Andhra (114), Goa (326), Gujarat (77), Haryana (60), Himachal (39), Punjab (62)	- · · · · · · · · · · · · · · · · · · ·				
	Axis 3 ($\lambda_3 = 0.039972$,	$, \tau_3 = 19.65\%)$				
Fields	Agriculture (461)	Earth & Space Science (336)				
States	Himachal (75), Karnataka (54)	Goa (177), Gujarat (170)				
	Axis 4 ($\lambda_4 = 0.020898$,	$, \tau_4 = 10.27\%)$				
Fields	Engineering & Technology (555), Materials (531)					
States	Punjab (279), Assam (226)	Maharashtra (91)				

* Values are in permills

Table 10.6 Contributions of explained points to the eccentricities of factorial axes $(\cos^2 \phi)^*$ (Research output).

Cloud	Explicative points with positive coordinates	Explicative points with negative coordinates
	Axis 1 ($\lambda_1 = 0.055512$,	$\tau_1 = 27.29\%$)
Fields	Clinical Medicine (817)	Physics (463), Chemistry (430)
States	Chandigarh (622), Delhi (770), Pondicherry (817)	Assam (462), Madhya Pradesh (333), Meghalaya (469), Orissa (447), West Bengal (656)
	Axis 2 ($\lambda_2 = 0.054350$,	$r_2 = 26.72\%$)
Fields	Biology (552), Earth & Space Science (582),	Physics (245)
States	Agriculture Andhra (620),Goa(620), Gujarat (314), Haryana (371), Himachal (298), Tripura (684)	Maharashtra (285), Tamilnadu (321)
	Axis 3 ($\lambda_3 = 0.039972$,	r3 = 19.65%)
Fields	Agriculture (611)	Earth & Space Science (318)
States	Himachal (424), Karnataka (258)	Goa (267), Gujarat (509)
	Axis 4 ($\lambda_4 = 0.020898$,	$t_4 = 10.27\%$)
Fields	Engineering & Technology (866), Materials (243)	_
States	Punjab (636), Assam (798), Tamilnadu (392)	Maharashtra (314)

* Values are in permills

The first four factorial axes $\phi_1 - \phi_4$, indicating about 84% of the total variance (τ) in the multidimensional system, yield the most parsimonious representation of the data. The first two axes, accounting for about 54% of the total variance, represent the essential features of the system; the third and fourth axes respectively accounting for 19.65% and 10.27% of the total variance provides complementary data for further analysis and elaboration.

Figure 10.3 represents the two – dimensional factorial map constituted by ϕ_1 and ϕ_2 axes.

Factor ϕ_1 : The first factorial axis, accounting for 27.3% of the total variance, represents the most important element of the structure of the multidimensional system.

On the cloud of fields, this factor is characterized by the polarity between *Clinical Medicine* on the one hand and *Physics* and *Chemistry* on the other. *Clinical Medicine* is almost entirely represented on this axis. *Clinical Medicine* projected with positive coordinate, whereas *Physics* and *Chemistry*

mistry are projected with negative coordinates.

The states projected on this axis can be classified into two clusters, depending upon the signs of their coordinates of projection.

Cluster 1: Chandigarh, Delhi and Pondicherry

Cluster 2: Mah. rashtra, Orissa, West Bengal, Assam, Madhya Pradesh and Meghalaya *Cluster* 1 states, projected with positive coordinates, are correlated to *Clinical Medicine*, whereas *Cluster* 2 states, projected with negative coordinates, are correlated to *Chemistry / Physics*. This means that Cluster 1 states publish preferentially in *Clinical Medicine*, whereas *Cluster* 2 states publish preferentially in *Clinical Medicine*, whereas *Cluster* 2 states publish preferentially in *Clinical Medicine*, whereas *Cluster* 2 states publish preferentially in *Chemistry / Physics*; depending upon the proximities of these states to the poles of these two fields.

Factor ϕ_2 : This axis accounts for 26.7% of the total variance and constitutes the second most important element of the data structure. On the cloud of fields this factor is characterized by the polarity between *Biology*, Agriculture, *Earth & Space Science* on the one hand and *Physics* on the other.

209

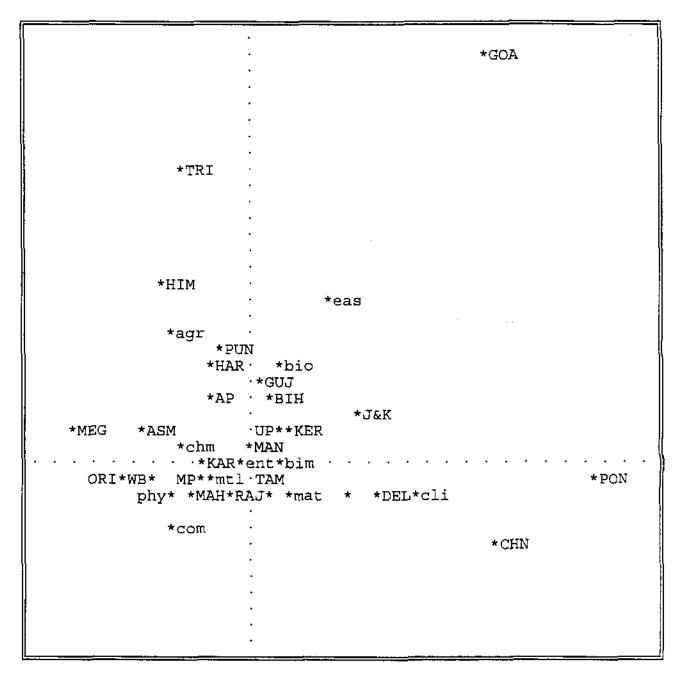


Fig. 10.3: Correspondence analysis map of research profile for 1994

Horizontal axis is dimension 1 with inertia = 0.0555 (27.3%) Vertical axis is dimension 2 with inertia = 0.0544 (26.7%) 54.0% of total inertia is represented in the above map The states projected on this axis can be classified into two clusters, depending upon the signs of their coordinates of projection.

Cluster 1: Andhra, Goa, Gujarat, Haryana, Himachal, Punjab and Tripura Cluster 2: Maharashtra and Tamilnadu.

Cluster 1 states, projected with positive coordinates, publish preferentially in *Biology*, *Agriculture*, and *Earth & Space Science*, whereas *Cluster* 2 states, projected with negative coordinates, publish preferentially in *Physics*.

Factor ϕ_3 : This factorial axis accounts for 19.7% of the total variance in the multidimensional system. Figur 10.4 presents the two – dimensional factorial map spanned by ϕ_1 and ϕ_3 axes.

On the cloud of fields, this axis is characterized by the polarity between *Agriculture* and *Earth & Space Science*. These two fields are associated on the second axis, but they are opposed on the third axis. However, association or opposition on the third axis is less pronounced than that on the second axis, since the third axis accounts for less variance than the second.

On the cloud of states, this axis is characterized by the polarity between Himachal and Karnataka on the one hand, and Gujarat and Goa on the other. Himachal and Karnataka publish preferentially in *Agriculture*, whereas Gujarat and Goa publish preferentially *Earth & Space Science*.

Factor ϕ_4 : This factorial axis accounts for 19.3% of the total variance in the multidimensional system (Figure 10.4).

This is a unipolar factor controlled by *Engineering & Technology* and *Materials*. Tamilnadu, Punjab and Assam are projected on this axis with positive coordinates and are therefore correlated to these two fields. Maharashtra is projected on this axis with negative coordinates and is therefore anticorrelated to these fields.

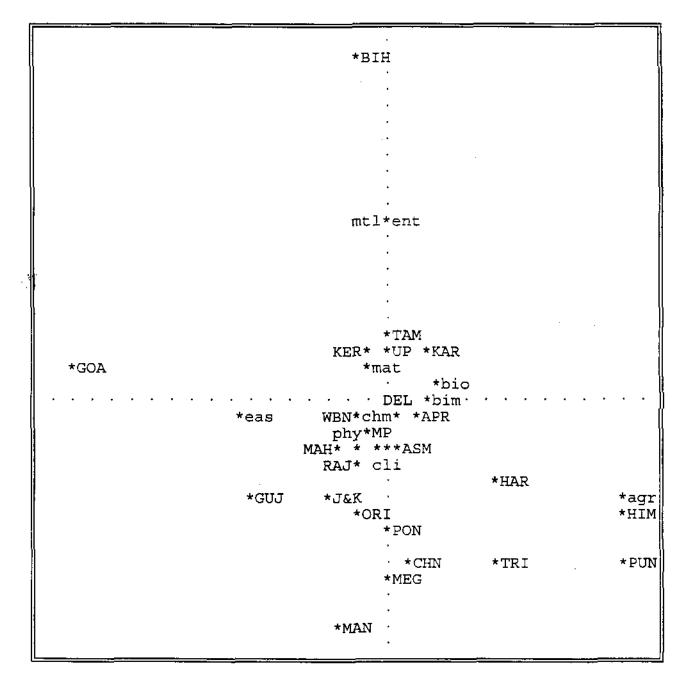
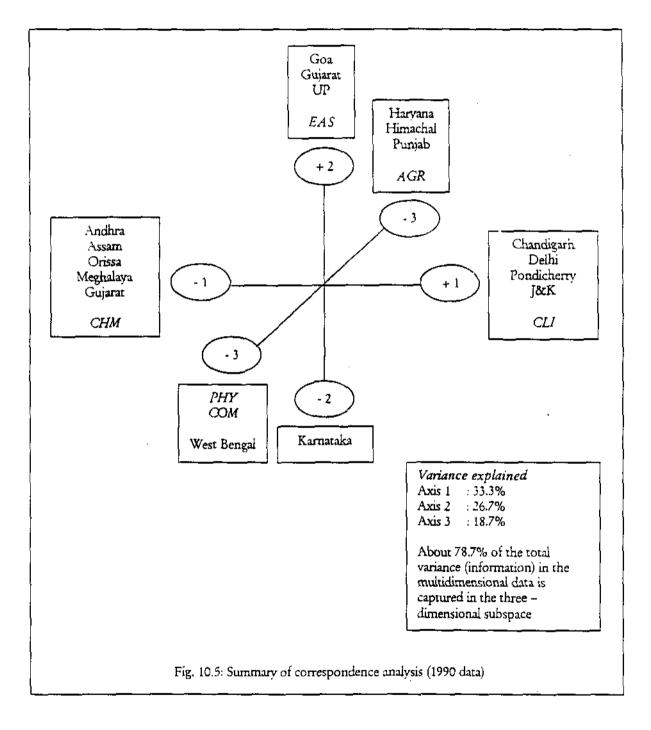
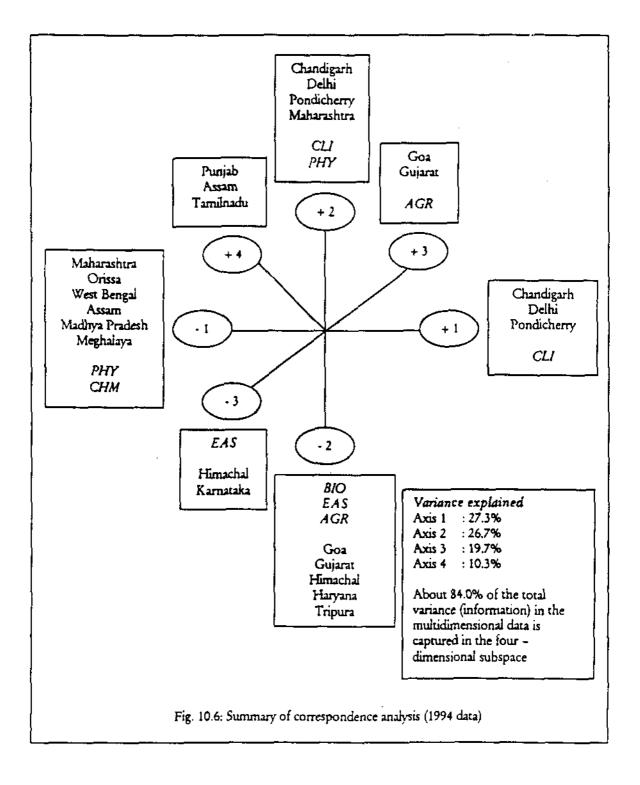


Fig. 10.4: Correspondence analysis map of research profiles for 1994

Horizontal axis is dimension 3 with inertia = 0.0400 (19.6%) Vertical axis is dimension 4 with inertia = 0.0209 (10.3%) 29.9% of total inertia is represented in the above map The complex structures of relationships of 24 states with eleven scientific fields (in which they publish and cooperate with other states) as revealed by the correspondence analysis of the data matrices are summarized in the *Infographic Maps* (Figures 10.5 and 10.6). Some keys for interpreting the *Infographic Maps* are given below:

In the Infographic Map, the significant factorial axes are displayed together, whereas in Correspondence Analysis, the factorial axes are displayed two at a time, orthogonal to each other. Hence, in the Infographic Map, the factorial axes cannot be displayed as orthogonal to each other.


In the factorial map, all countries and fields are located at different points, and inter – point distances have certain meaning. In the *Infographic Map*, only those countries and fields are displayed, which are correlated to the significant factorial axes. Both countries and fields are located at the poles of the factorial axes and inter – point distances have no meaning!


Countries and fields located at a given pole of a factorial axis are associated. This means that the countries have stronger preference for cooperation in the fields located at the proximate pole. These countries are anticorrelated to the fields located at the opposite pole of the factorial axis and *vice versa*. However, the correlations and anticorrelations along the first axis are stronger than those on the second axis, which in turn are stronger than those on the third axis, and so on. This is due to the reason that the first factorial axis explains greater variance than the second axis, which in turn explains greater variance than the third axis, and so on.

10.2 Comparisons of Structures of Research Output for 1990 and 1994 Data

The structures of research output for 1990 and 1994 data revealed by correspondence analysis are not concordant. There are important differences as well as similarities which are summarized below:

- Total inertia of the configuration for 1990 data is greater than that for 1994 data, which means that interstate differences in research profiles are greater in 1990 than in 1994.
- 2. There are also differences in the composition of factorial axes on both the clouds (i.e. fields and states).
- There are certain difference in the correlations of states and fields during these two time spans.

- Matching of the two configurations using Cliff's algorithm. This procedure provides a global index of concordance between the configurations.
- (ii.) Introduction of the normalized profiles of research output for 1990 into the factorial map of research output for 1994, spanned by \$\overline{\u03c4}\$1 and \$\overline{\u03c4}\$2 axes as a mathematical model. This procedure reveals the deviations between the two profiles of different states along the most significant factorial axes.

10.3 Matching of Configurations

The matrices of projection coordinates of the row and column points on the first three (significant) factorial axes (24×4) for the two configurations were submitted to the computer program FMATCH, which is based on Cliff's algorithm.

Option 1 of the program was used to rotate both the matrices simultaneously to a compromise position. This is analogous to finding the orientation of \therefore – space and \mathcal{O} – space and matching the *n* projections in each space. The axes of the two spaces are rotated so that the columns of the rotated matrices are as similar as possible. This problem is one of finding eigen roots and eigen vectors and applying these transformations to the original matrices. The program computes a goodness of fit index (*GFI*) which ranges between -1 (worst fit) to +1 (perfect fit).

The program issued the following value of goodness of fit index:

GFI = 0.835

which indicates that the fit between the two configurations is very good, but not perfect. This means that there are only marginal changes in the profiles of states and fields during the two time spans 1990 and 1994.

Introduction of Cooperation Profiles of States into the Structure of Research Output

The rows of the data matrices for research output and intestate cooperation were merged, which resulted in a 48×11 matrix. Correspondence analysis was performed on this matrix. The rows for cooperation links were treated as supplementary variables.

Since all the 48 row points could not be displayed in one factorial map due to overlapping of points, the results of correspondence analysis are displayed in two superimposable factorial maps (Figures 10.7 and 10.8) – Andhra, Assam, Bihar, Chandigarh, Delhi, Goa, Gujarat, Haryana, Himachal, Jammu & Kashmir and Karnataka an Kerala, and the other for Madhya Pradesh, Maharashtra, Manipur, Meghalaya, Orissa, Pondicherry, Punjab, Rajasthan, Tamilnadu, UP and West Bengal.

in these maps, upper case letters representing the states pertain to the 1990 data and the lower case letters representing the states pertain to the 1994 data.

It can be easily seen from the maps that the distance between the corresponding points for research output and cooperation links is not the same for all states. For certain states, the distance is trivial, whereas for other states the distance is considerable. Lines have been drawn between the corresponding points of a state if the distance is considerable.

Considerable distances in the corresponding points of the following states are observed: Tripura, Orissa, Pondicherry, Punjab, Rajasthan, Assam and Goa.

These results indicate that there are hardly any changes in the research profiles of (scientifically) large states (i.e. the hard core of Indian science), whereas there are non-trivial changes in the research profiles of some of the smaller states.

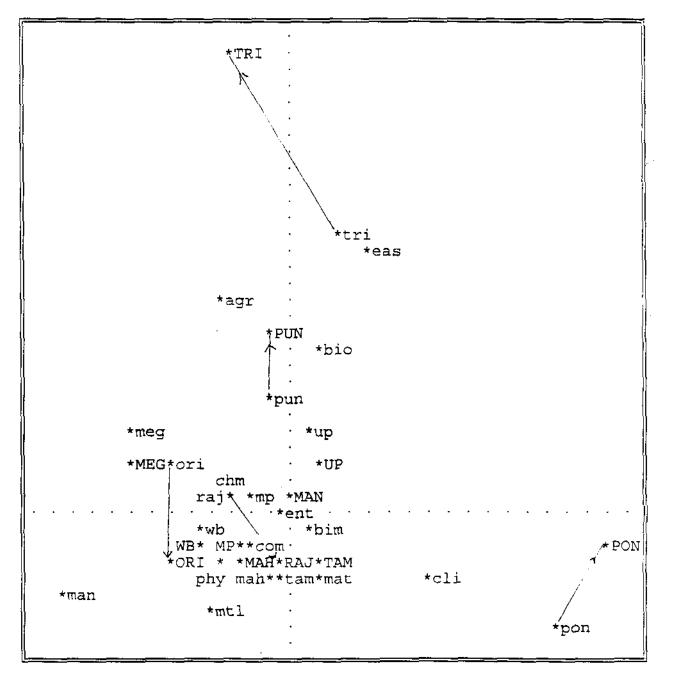


Fig. 10.7: Correspondence analysis map showing deviations between research output in 1990 and 1994 (Maharashtra to West Bengal)

State points for 1990 : lower case letters State points for 1994 : upper case letters

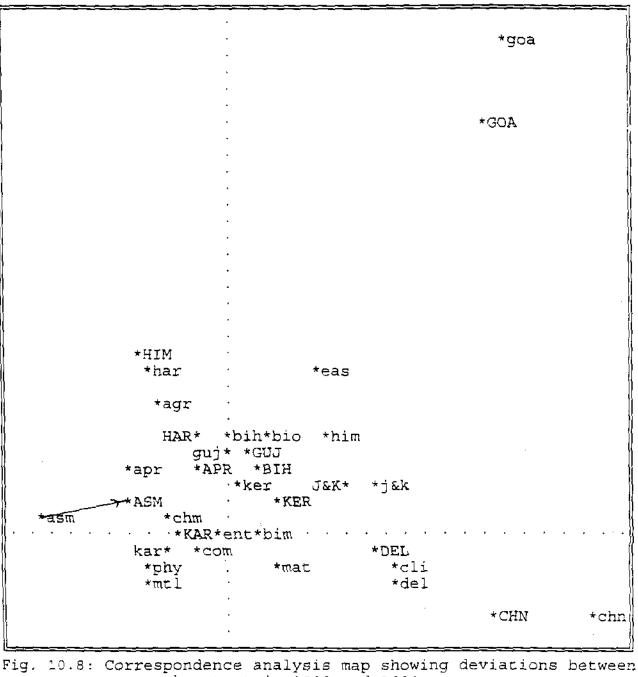


Fig. 10.8: Correspondence analysis map showing deviations between research output in 1990 and 1994 (Andhra to Kerala)

State points for 1990 : lower case letters State points for 1994 : upper case letters

1 1 Interstate Co-operation

So far, we have examined the configurations of relationships of twenty eight states with eleven science fields on the basis of research output. But how are the states related among themselves? Which state cooperates with whom and to what extent?

The networks of cooperation links among the states can be depicted in the form of a (valued) adjacency matrix:

$$\mathbf{C} = |C_{ij}|$$

where C_{ij} indicates the number of cooperation links between state *i* and state *j*. Obviously, $C_{ii} = 0$. Since these links are bidirectional, the matrix is symmetric.

Tables 11.1 and 11.2 present the number of interstate links for 1990 and 1994.

During 1990, a total of 1302 cooperation links were observed, which for 756 cells, give a mean value of interstate links: 1.72. This is called the overall *density* of the network. About 67.5% of the cells (excluding the diagonal) are empty, indicating absence of any link. In 1994 the number of links increased to 2618; the density of network increased to 3.46. The overall characteristics of the networks for 1990 and 1994 are given in Table 11.3.

These results indicate that interstate cooperation has become not only more intensive, but also more expensive. In other words, the states which did not have any mutual connection in 1990, developed cooperation links in 1994.

STATE	and	APR	ARN	ASM	BiH	СЮ	_DEL	GOA	GUJ	HAR	HIM	ſΚ	KÄR	KER	MAP	MAH	MAN	MEG	MZ	ORI	PON	PNJ	RAJ	SIK	TAM	TRI	UPR	WEN	TOT
AND							_																						0
APR				1	3	2	3	2	2	1		1	12	2	1	7		1		2	4		1		11		12	12	80
ARN				1																									1
ASM		1	1													1											1	4	8
BIH		3					8			1		1	4	1	1	2									2		12	6	41
CHID		2					18			2	4	6	1	1		9						7	4				1		55
DEL		3			8	18		2	4	11	1		7	2	5	20	1			4	3	8	7		10		45	11	170
GOA		2					2						1	1		5									3				14
GUJ		2					4				1		2	5	1	12				3					3		5	5	43
HAR		1			1	2	11				2	2		2		1						2	1				8	1	34
HIM						4	1		1	2												3					3		14
J&K		1			1	6				2												3	4				1		18
KAR		12			4	1	7	1	2					7	2	17					2		1		23		8	12	99
KER		2			1	1	2	1	5	2			7			4									7		6	2	40
MAH		· 1			1		5		1				2			8				3		1					12	1	35
MAN		7		1	2	9	20	5	12	1			17	4	8					6			7		29		12	13	153
MAP							1																1				1	5	8
MEG		1																									4	2	7
MIZ																											1		1
ORI		2					4		3						3	6											2	5	25
PNJ		4					3						2												3		2		14
PON						7	8			2	3	3			1												5		29
RAJ		1				4	7			1		4	1			7	1										9		35
SIK																													0
TAM		11			2		10	3	3				23	7		29					3						6	6	103
TRI																													0
UPR		12		1	12	1	45		5	8	3	1	8	6	12	12	1	4	1	2	2	5	9		6			17	173
WBN		12	•	4	6		11		5	1.			12	2	1	13	5	2		5					6		17		102
							_								_														0
TOT	0	80	1.	8	41	55	170	14	43	34	14	18	99	40	35	153	8	7	1	25	14	29	35	Ó	103	0	173	102	1302

Table 11.1 Inter-state collaboration Matrix -1990.

<i>[able]</i>		2 1111	er-5	late	COII	avu	au		aur	x - 1	3 34																		
STATE	AND	APR	ÄRN	ASM	BIH	ĊHD	DEL	GOA	GUU	HAR	HIM	<u>j </u> K	KAR	KER	MAP	MAH	MAN	MEG	MIZ	ORI	PON	ΡŊ	RAJ	SIK	TAM	TRI	UPR	WBN	TOT
AND							_	_								_													0
APR							1	4	1	1				7	2	12		1			1				23		19	3	75
ADM		4																											2

Table 11.2 Inter-state Collaboration Matrix - 1004

0000	1010			,		0.10				1041	1 11144	<u></u>	10.0.		148.4	110-91	1976.4.4	- MILO	TAILT			F 1462	<u></u>	OIN	1711	11.0	<u>uri</u>	TIDIT	
AND						-	_													_				-					0
APR							1	4	1	1				7	2	12		1			1				23		19	3	75
ARN		1														t												1	3
ASM					1		1		1			1		2		1	2	1			1		1		2		4		18
BIH											1		1	1	1	1					1	2					9	11	28
CHD		1		1	1		8			2	1	6		2		2				1	1	9	4		2		5		46
DEL		9		2	7				2	5	2	2	1	9	1	3				2	6	2	6		6		12	1	78
GOA		2		1	1	1	1		1			1	1	1		1				1	1		1		1			1	16
GUJ		3		4	1	1	7					1	7	4	3	24				7	3	1	4		4		9	12	95
HAR						1	7		1			2										2	1				6		20
нім						1	1																						2
J&K	,				1		5	1		3				1							1		2		1		3		18
KAR		32		1	1	6	21			1		1		13	5	36		1		4	2		2		43		15	13	197
KER		1			1			1		1			2			1									7		1		15
MAH		13		3	8	11	28	6				4	4	1	19					2	4		6		19		16	21	165
MAN	1			2			2																					1	6
MAP		3			1		13		1	1						1		1							2		8	3	34
MEG																											3	ļ	3
MIZ																											1		1
ORI		2		4	1	1	12		1			2	2	5	1	8					3	1	1		5		7	7	63
PNJ					1	3	5			2	1	3															7		22
PON		4												1														l	5
Raj				1	2	1	7			3		6		2	1	2				1	2				2		2	1	33
SIK																												1	1
TAM		7			7		17			1	1		5	12		4				1	11	1					7	1	75
TRI •							1												1								1	2	5
UPR		3	1	4	4	2	45	1	4	2	3	1	3	14	9	12				5	5	1	7		13			4	143
WBN	2	7		5	9	5	17	1	1	1	1	5	1	7	3	9	7	2		6	4	1	3		14		13	I	124
TOT	3	88	1	28	47	33	199	14	13	23	10	35	27	82	45	118	9	6	1	30	46	20	38	0	144	0	148	83	1291

Table 11.3: Overall characteristics o	fnetworks	
	1990	1994
Total no. of links	1302	2618
Network density	1.72	3.46
No. of empty cells	510	384
% of empty cells	67.46	48.95

It is observed that some of the matrix cells are either empty or have very small values, whereas some other cells have large values, implying wide variations in mutual ties. The development of cooperation between any two states is influenced by geographical proximity, historical or political factors, culture and tradition. It is also influenced by the intervention of funding agencies -e.g. all India coordinated projects, etc. as well as by the dynamics of supply and demand.

Certain states have strong links with many other states; their network of cooperation is extensive. In other words, they occupy a central position in the network. On the other hand, there are certain states which have links with only a few states and thus occupy a peripheral position in the network. The centrality of a state refers to the attractiveness of its scientific community to attract cooperation from the scientific communities of other states. We have used the graph – theoretic measure of *Centrality* to quantify the position of different states in the network. If a state has connections with many other states in the network, its centrality would be high. If a state has connections with only a few states, its centrality would be low.

In this study, we have used the *Bonacich eigenvector centrality* measure to indicate the position of a state in the network. In this formulation, a link with a state occupying a central position counts more than a link with a state occupying a peripheral position. Thus, the centrality of a state is determined by the centralities of the states to which it is connected. *Bonacich eigenvector centrality* index ranges from 0 to 1. We have also computed the *Network Centralization Index*, which measures the centralization of the entire network. Larger this index, more likely that a single state is quite central and the remaining states are much less central. The less central states may be viewed as residing in the periphery of a

centralized system. The software UCINET IV was used to compute the eigenvector centralities of different states and the Network Centralization Index.

Table 11.4 presents the data on centralities of different states for 1990 and 1994. Three states viz. Andaman, Arunachal and Sikkim were excluded for the computation of the centrality index since these states were completely isolate in 1990.

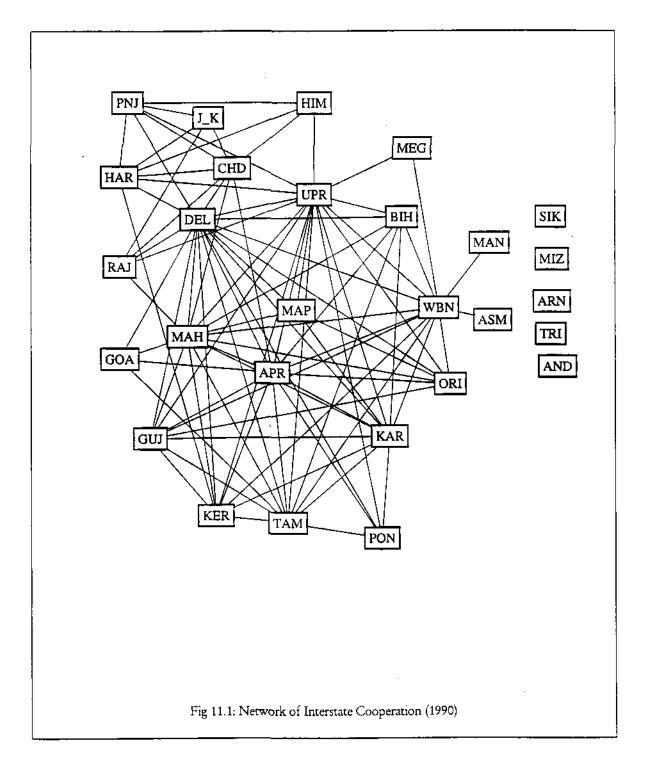
The following trends are observed from Table 11.4:

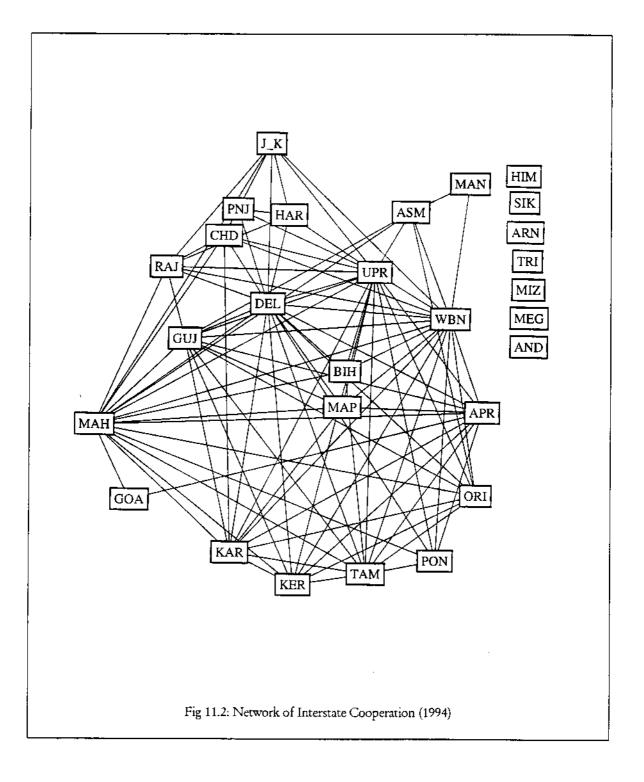
- 1. The values of *Network Centralization Index* are not high indicating that the two networks are not very centralized. This means that no single state dominates the network.
- 2. The network centralization index has decreased, indicating that the network had become more decentralized. This means that some of the more 'central' state have become less central, and some of the peripheral states have become less central.
- 3. The value of eigenvector centrality index indicate that no state dominates the network, either in 1990 or 1994.
- 4. In general the centrality of larger states has decreased whereas that of smaller states increased in the interval between 1990 and 1994:
 - (a) The centrality of the following states decreased: Bihar, Chandigarh,
 Delhi, Goa, Haryana, Himachal, Manipur, Meghalaya, Rajasthan, Uttar
 Pradesh, West Bengal.
 - (b) The centrality of the following states increased: Andhra, Arunachal,
 Assam, Gujarat, Jammu and Kashmir, Kerala, Madhya Pradesh,
 Orissa, Tamilnadu.
 - (c) There was no change in the centrality of the Maharashtra, Mizoram,Pondicherry and Punjab.

The entries in the (valued) adjacency matrix can be viewed in terms of both the overall levels of cooperation and patterns of cooperation. The overall level of cooperation is largely a function of the size of the state, while the pattern is not. The pattern of cooperation must be viewed without any confounding effects due to size. Since we are concerned primarily with the structure of the network, we have normalized the matrix for controlling the effect of size.

	1990	1994	Change
APR	0.219	0.290	↑
ARN	0.000	0.007	\uparrow
ASM	0.022	0.057	↑
він	0.143	0.114	\downarrow
CHD	0.145	0.0 9 7	\downarrow
DEL	0.452	0.387	\downarrow
GOA	0.047	0.041	4
GUJ	0.132	0.162	1
HAR	0.105	0.057	\downarrow
HIM	0.029	0.018	\downarrow
J_K	0.026	0.057	ſ
KAR	0.291	0.361	↑
KER	0.116	0.172	1
MAP	0.124	0.143	ſ
MAH	0.399	0.399	*
MAN	0.024	0.017	\downarrow
MEG	0.026	0.014	\downarrow
MIZ	0.004	0.002	~
ORI	0.077	0.138	↑
PON	0.046	0.046	~
PNJ	0.077	0.073	*
RAJ	0.113	0.093	Ļ
TAM	0.314	0.339	· 1
UPR	0.443	0.382	\downarrow
WBN	0.283	0.262	\downarrow
Network Centralization Index	56.55%	4 6.18%	

The normalized matrices represent essentially the structural features of the data devoid of distortions due to skewed marginal distributions. The entries in the matrix indicate the strength of cooperation links between pairs of states. The matrix however does not convey much information as it is not easy to discern the pattern of linkages from a large data


matrix. Since visual representation is useful in getting a sense of the data, we have transformed the normalized matrices into graphs.


The graphs were developed as follows: Euclidean distances between all the pairs of states was computed and the matrices of Euclidean distances, were subjected to Multidimensional Scaling (MDS). The multidimensional scaling algorithm locates states in a low - dimensional metricized space such that the states are located close together if they have a large number of ties with the same other partners. In other words, states which are 'structurally similar' are placed close together. The states which are structurally dissimilar are located far apart from each other. It should, however, be noted that the distance between any two points does not necessarily indicate the strength of relationships.

Krack Plot 3.0 was used to aesthetically improve the maps yielded by the MDS algorithm. The maps were re-oriented and rotated such that the resulting configuration approximated the location of the states as in a geographical map (with as few exceptions as possible). Then the points representing the states were adjusted for clarity, first manually and then through simulated annealing.

Figures 11.1 and 11.2 present the networks of cooperation links of 28 states for 1990 and 1994, wherein the arcs between the states indicate the strength of cooperation links above a certain threshold (> overall density of the normalized matrix).

The network presented in Figures 11.1 and 11.2 are quite revealing as they provide a synoptic view of state – by – state relationships. But the networks are quite complex and difficult to comprehend. The network for 1990 comprises 180 arcs and that for 1994 comprises 192 arcs. It is therefore essential to find a parsimonious representation of the total configuration by clustering the states

into subgroups or 'blocks' and then depict the relationships among the subgroups. In social network analysis, subgroups are identified on the basis of certain graph – theoretic measures, *e.g.* structural equivalence or internal cohesion. Burt has pointed out that subgroups based on structural equivalence should be preferred to those based on cohesion. A number of algorithms are proposed in the literature for finding structurally equivalent subgroups or blocks. We have classified the states into blocks according to their structural equivalence using the Tabu search algorithm implemented in *UCINET*. The resulting configuration of relationships between the blocks may be termed as a 'block model'.

The block model was constructed as follows. The normalized matrix of was dichotomized by recoding the cell values:

1 if value \geq overall density of the matrix 0 otherwise

The rows and columns of the resulting adjacency matrices were permuted such that the states belonging to the same block are adjacent in the permuted matrix. The densities of links between and within the blocks were computed by summing up the cell values in the permuted matrices and dividing the sum by the number of possible cells. Tables 11.5(a) and 11.6 (a) present the densities of different blocks for 1990 and 1994.

The 'density matrices' was transformed into image matrices by dichotomizing the density matrices with mean density as cut-off value. The image matrices are presented in Table 11.5(b) and 11.6(b) which indicate the presence or absence of links between and within the blocks.

Figure 11.3 presents the network of relationships between and within the blocks for 1990. It can be easily seen that block B8 (Andaman, Sikkim, Tripura) is isolated from the rest of the blocks. Block B2 (Goa, Arunachal Pradesh, Manipur, Orissa, Pondicherry, Assam, Mizoram) is a satellite of block B6 (Andhra, West Bengal). There are no internal connection within block B2. Similarly block B3 (Kerala, Gujarat) is a satellite for block B4 (Karnataka, Maharashtra and Tamilnadu) and block B5 (Himachal and Jammu & Kashmir) is a satellite of block B7 (Maharashtra, Haryana, Bihar, Punjab and Rajasthan). Block B4 occupies a central position in the blockmodel it is connected to four other blocks, whereas blocks B1 (Delhi and UP), B6 and B7 are each connected to three other blocks.

Figure 11.4 presents the network of relationships between and within the blocks for 1994. It can be easily seen that blocks B1 (Andaman, Arunachal, Meghalaya, Mizoram, Tripura,

Sikkim, Goa, Himachal, Manipur, Orissa and Bihar) and B3 (Rajasthan, Pondicherry, Punjab, Chandigarh, Jammu & Kashmir, Assam and Haryana) are isolated from the rest of the blocks. Block B7 (Maharashtra) occupies a central position in the blockmodel.

Table 11.5(a) Density of Links between block for 1990										
	Bl	B2	B3	B4	B5	B6	B 7	B8		
B1	6.91	1.61	1.31	4.84	0.38	3.30	7.99	0		
B2	1.61	0.15	0.31	1.61	0.00	2.00	0.31	0		
B3	1.31	0.31	0.77	2.69	0.0 8	0.84	0.38	0		
B4	4. 8 4	1.61	2.69	10.6 0	0.00	4.69	2.84	0		
B5	0.38	0.00	0.08	0.00	0.00	0.08	1.92	0		
B6	3.30	2.00	0.84	4.69	0.08	1.84	1.23	0		
B 7	7.99	0.31	0.38	2.84	1.92	1.23	2.92	0		
B 8	0	0	0	0	0	0	0	0		

Legend:

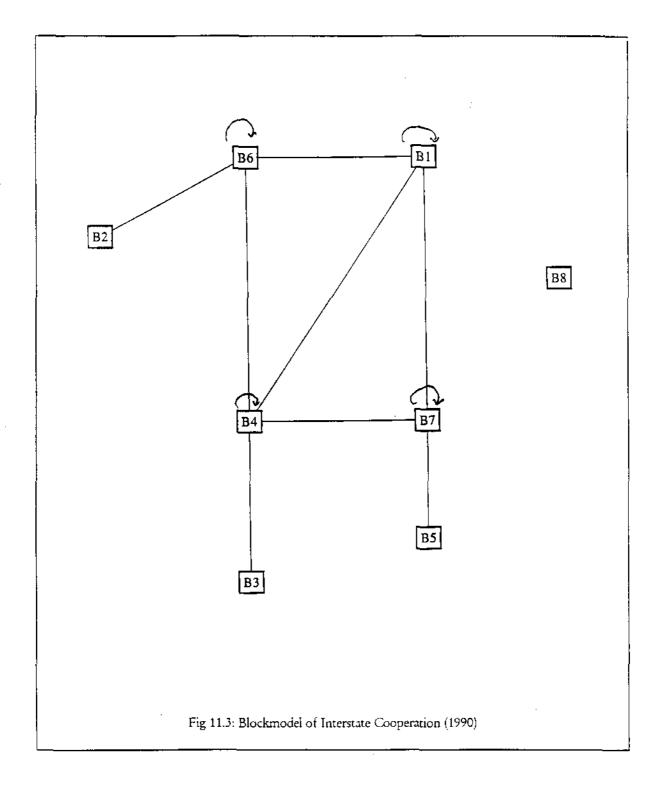
β1	: DELHI, UP
β2	GOA, ARUNACHAL PRADESH, MANIPUR, ORISSA,
	PONDICHERRY, ASSAM, MIZORAM

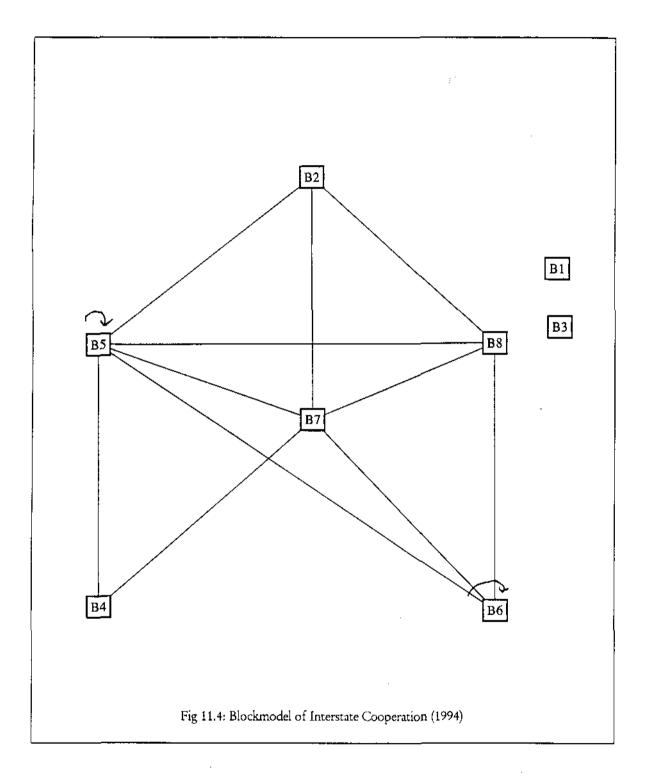
- β_3 : KERALA, GUJARAT
- β_4 : KARNATAKA, MAHARASHTRA, TAMILNADU
- β₅ : HIMACHAL, JAMMU & KASHMIR
- β_6 : ANDHRA PRADESH, WEST BENGAL
- β_7 : MAHARASHTRA, HARYANA, BIHAR, PUNJAB, RAJASTHAN
- $\beta 8$: ANDMAN, SIKKIM, TRIPURA

		or 1990	(Using	cutoffs =	mean			
	Bl	B2	В3	B4	B5	B6	B 7	B8
B1	1	0	0	1	0	1	1	0
B2	0	0	0	0	0	1	0	0
B3	0	0	0	t	0	0	. 0	0
B4	1	0	1]	0	1	1	0
B5	0	0	0	0	0	0	1	0
B6	I	1	0	1	0	1	0	0
B7	1	0	0	1	1	0	1	0
B8	0	Ò	0	0	0	0	0	0

	e 11.6(a) ity of Lin	ks betwe	en block	for 199	4			
	B1	B2	B3	B4	B5	B6	B7	B8
Bl	0.00	0.01	0.01	0.01	0.04	0.02	0.03	0.08
B2	0.01	0.04	0.06	0.12	0.44	0.15	0.36	0.63
B3	0.01	0.06	0,11	0.05	0.29	0.07	0.18	0.14,
B4	0.01	0.12	0.05	0.10	0.49	0.29	0.70	0.33
B5	0.04	0.44	0.29	0.49	2.18	0.79	1.13	0.67
B6	0.02	0.15	0.07	0.29	0.79	1.40	1.12	0.50
B7	0.03	0.36	0.18	0.70	1.13	1.12	0.00	1.15
B8	0.08	0.63	0.14	0.33	0.67	0.50	1.15	0.00

Legend:


 β_1 : ANDAMAN, ARUNACHAL, MEGHALAYA, MIZORAM, TRIPURA, SIKKIM,


GOA, HIMACHAL, MANIPUR

- β_2 : ORISSA, BIHAR
- β₃ : RAJASTHAN, PONDICHERRY, PUNJAB, CHANDIGARH, JAMMU & KASHMIR, ASSAM, HARYANA
- β_4 : GUJARAT, KERALA, MADHYA PRADESH
- β_5 : UTTAR PRADESH, DELHI
- β₆ : ANDHRA PRADESH, KARNATAKA, TAMILNADU
- β_7 : MAHARASHTRA
- β8 : WEST BENGAL

Table 11.6(b)	
Image matrix for 1994 (Using cutoffs = mean density)	
(Cange untern for 1994 (Cange Coolis - mean density)	

-			. –						
	B1	B2	B3	B4	B5	B6	B7	B8	
B 1	0	0	0	0	0	0	0	0	
B 2	0	0	0	0	۱	0	I	l	
B 3	0	0	0	0	0	0	0	0	
B4	0	0	0	0	ŀ	0	1	0	
B 5	0	1	0	1	1	1	1	1	
B6	0	0	0	0	١	١	١	1	
B 7	0	1	0	1	1	1	0	1	
B8	0	l	0	0	1	1	1	0	
									_

.

References

- 1. Science Citation Index, Database of Publications from about 400 journals world-wide, published by the Institute for Scientific Information, USA.
- 2. Garfield, E,..A statistically valid definition of bias is needed to determine whether the SCI discriminate against the IIIrd world, *Current Science*, Vol 71, NO 8, October 25, 1997
- 3. Journal Citation Reports, A Bibliometric Analysis of Science Journals in the ISI Database, Institute for Scientific Information, 1994 Citation Index.
- Ulrich's Institutional Periodicals Directory, Vol 1-3, The Bowkers Institutions Serials Database.
 R.R.Browker, New York, 1989-90- 28th Edition.
- Directory of R&D Institutions 1994, Government of India, Ministry of Science & Technology, New Delhi.
- Braun, T, Glanzel, W, Maczelka, H, Schubert, A, World science in the Eighties: National performances in publication output and citation impact, 1985-89 vs. 1980-84, Scientometrics 29 (1994), 299.
- Van Vianen, B.G., Moed. H.F., van Raan, A.F.J., An exploration of the science base of recent technology, Research Policy 19 (1990) 61-81.
- Nagpaul, P.S. Science beyond institutional boundaries: Mapping of transnational linkages of Indian science (Report), New Delhi

.

. .

Major Scientific Agencies and Other Departments

1	DAE	Department of Atomic Energy	
2	CSIR	Council of Scientific and Industrial Research	
3	DRDO	Defence Research Development Organisation	
4	DOE	Department of Electronics	
5	MOEn	Ministry of Environment and Forests	
6	ICAR	Indian Council of Agricultural Research	
7	ICMR	Ian Council of Medical Research	
8	DBT	Department of Biology-Technology	
9	DSIR	Department of Scientific and Industrial Research	
10	DOS	Department of Space	
11	DA&C	Department of Agriculture and Cooperation	
12	DAHD	Department of Animal Husbandary and Dairying	
13	DCP	Department of Chemicals and Petrochemicals	
14	DOF	Department of Fertilizers	
15	DCA	Department of Civil Aviation	
16	MCS	Department of Civil Supplies	
17	MOC	Ministry of Coal	
18	MOCo	Ministry of Commerce	
19	DOT	Department of Telecommunications	
20	DODe	Depatment of Defence	
21	DDPS	Department of Defence Production and Supplies	
22	MOFo	Ministry of Food	
23	MFPI	Ministry of Food Processing Industries	
24	MHFW	Ministry of Health and Family Welfare	
25	MHA	Ministry of Home Affairs	
26	DOCu	Department of Culture	
27	DHI	Department of Heavy Industry	
28	DID	Department of Industrial Development	
29	DSSI	Department of Small Scale Industries, Agro and Rural Industries	
30	MI&B	Ministry of Information and Broadcasting	
31	MOL	Ministry of Labour	
32	MOM	Ministry of Mines	
33	MPNG	Ministry of Petroleum and Natural Gas	
34	DOSt	Department of Statistics	
35	MOP	Ministry of Power	
36	MOR	Ministry of Railways	
37	MRD	Ministry of Rural Development	
38	MOSI	Ministry of Steel	
39	MSTt	Ministry of Surface Transport	
40	MUD	Ministry of Urban Development	
41	MOW	Ministry of Welfare	
42	MOTx	Ministry of Textiles	
43	MWR	Ministry of Water Resources	
44	MHRD	Ministry of Human Resources Development	
45	MNCER	Ministry of Non Conventional Energy Resources	
46	DOM	Department of Meteorology	

,

ISO standard country codes

CODE	COUNTRY	GIB	Gibralter	PAK	Pakistarı
	Armenia	GIN	Guinea	PAN	Panama
	Byelarus	GLP	Guadeloupe	PER	Peru
AFG	Afghanistan	GRC	Greece	PHL	Philippines
AFI	Afars & Iss	GRL	Greeniand	PNG	Papua New Guine
AGO	Angola	GTM	Guatemala	POL	Poiand
ALB	Albania	GUF	French Guyana	PRC	PR China
ANT	Neth Antillas	GUY	Guyana	PRK	North Korea
ARE	United Arab Emir	HKG	Hong Kong	PRT	Portugal
ARG	Argentina	HND	Honduras	PRY	Paraguay
ASM	American Samoa	HTI	Haiti	PYF	French Polynesia
ATA	Antarctica	HUN	Hungary	QAT	Qatar
AUS	Australia	HVO	Upper Volta	REU	Reunion
AUT	Austria	IDN	Indonesia	ROM	Romania
BDI	Burundi	IND	India	RWA	Rwanda
BEL	Belgium	IRL	Ireland	SAU	Saudi Arabia
BEN	Benin	IRN	Iran	SDN	Sudan
BEU	Belau	IRQ	lrag	SGA	Senegambia
BGD	Bangladesh	ISL	Iceland	SGP	Singapore
BGR	Buigaria	ISR	Israet	SIK	Sikkim
BHR	Bahrain	ITA	Italy	SLB	Soloman Isl
BHS	Bahamas	JAM	Jamaica	SLE	Sierra Leone
BHU	Bhutan	JOR	Jordan	SLV	EL Salvador
BIG	Bissau Guinea	JPN	Japan	SMR	San Marino
BLZ	Belize	KEN	Kenya	SOM	Somalia
BMU	Bermuda	KIR	Kiribati	SSA	Spanish Sahara
BOL	Bolivia	KOR	South Korea	SUN	USSR
BPW	Bophuthatswana	KWT	Kuwait	SUR	Surinam
BRA	Brazil	LAO	Laos	SWE	Sweden
BRB	Barbados	LBN	Lebanon	SWZ	Swaziland
BRN	Brunei	LBR	Liberia	SYC	Seychelles
BUR	Burma	LBY	Libya	SYR	Syria
BWA	Botswana	LIE	Liechtenstein	TCD	Chad
CAF	Central Africa	LKA	Sri Lanka	TGO	Togo
CAN	Canada	LSO	Lesotho	THA	Thailand
CHE	Switzerland	LUX	Luxembourg	TON	Толда
CHL	Chile	MAR	Morocco	TRK	Transkei
CIK	Ciskei	MAU	Mauritania	ŢŤO	Trinidad & Toba
CIV	lvory Coast	MCO	Моласо	TUN	Tunisia
CMR	Cameroon	MDG	Malagasy Rep	TUR	Turkey
COG	Congo PR	MEX	Mexico	TWN	Taiwan
COK	Cook Island	MIC	Micomesia	TZA	Tanzania
COL	Colombia	MIL	Marchail Islands	UGA	Uganda
CRI	Costa Rice	MLI	Mali	UKD	UK
CSK	Czechoslovakia	MLT	Malta	URY	Uruguay
CUB	Cuba	MNG	Mongol PR	USA	USA
CYP	Cyprus	MOZ	Mozambique	VAT	Vatican
DDR	German DR	MTQ	Martinique	VEN	Venezuela
DEU	Germany FR	MUS	Mauritius	VND	Venda
DNA	Dominican Rep	MWI	Malawi	VNM	Vietnam
DNK	Denmark	MYS	Malaysia	VUT	Vanuatu
DZA	Algeria	NAM	Namibia	WIA	W Indian Assoc
ECU	Ecuador	NGA	Nigeria	WSM	Western Samoa
EGY	Egypt	NCL	New Caledonia	YEM	Yemen Arab Rep
EQG	Equat Guinea	NGR	Niger	YMD	Yemen PDR
ESP	Spain	NIC	Nicaragua	YUG	Yugoslavia
ETH	Ethiopia	NIU	Niue	ZAF	South African R
FIN	Fintand	NLD	Netherlands	ZAR	Zaire
FЛ	Fiji	NOR	Norway	ZMB	Zambia
FRA	France	NPL	Nepal	ZWE	Zimbabwe
GAB	Gabon	NZL	New Zealand		
GHA	Ghana	OMN	Отал		

Subject Classification system

Science

- 1. Mathematics
- 2. Physics
- 3. Chemistry
- 4. Biology
- 5. Earth & Atmospheric Sciences
- 6. Food & Agriculture Research
- 7. Clinical Medicine
- 8. Biomedical Research
- 9. Engineering and Technology
- 10. Computer Science
- 11. Materials Science
- 12. Multi-Disciplinary

Physics

General Physics Solid State Physics Applied Physics Nuclear & Particle Physics Chemical Physics Astronomy & Astrophysics Optics Crystallography Spectroscopy Acoustics Fluids & Plasmas Mathematical Physics Microscopy

Chemistry

Organic Chemistry Inorganic & Nuclear Chemistry General Chemistry Physical Chemistry Polymers Analytical Chemistry Electro Chemistry Applied Chemistry

Agriculture

Agriculture & Food Sciences Food Science Agricultural Soil Sciences Dairy & Animal Sciences Horticulture Forestry Agricultural Economics & Policy

Earth & Space Sciences

Environmental Sciences Earth & Planetary Sciences Geology Remote Sensing Meteorology & Atmospheric Sciences Oceanography & Limnology

Biology

Botany-Plant Science General Biology Marine Biology + Hydrobiology Entomology Ecology Misc. Biology General Zoology Misc. Zoology

Mathematics

- 1.General Mathematics
- 2. Applied Mathematics
- 3. Inter-disciplinary Mathematics
- 4. Probability and Statistics
- 5. Operational Research & Management Science

.

.

:

Appendix 3 (Continued)

Biomedical Research

Biochem. & Mole. Bio. Microbiology General Biomed. Res. Genetics & Heredity Biomed. Engn Nutrition & Dieteics Virology Parasitology Cell Biology., Cyto. & Histo Misc. Biomedcial Res. Embryology Biophysics Anatomy & Morphology Physiology

Material Science

General Material Science Ceramic Materials Biomaterials Characterization of Materials Textiles, Fibres, Leather Coatings & Films Paper & Pulp Wood Composites

Engineering & Technology

Elec. Engn. & Electronics Mechanical Engn. Metals & Metallurgy Chemical Engn. Misc. Engn. & Tech Civil Engineering Aerospacetech Nuclear Tech. General Engn. Telecom. Engn.

Computers & Communication Science

Miscellaneous Artificial Intelligence Information System Interdisciplinary Applications Cybernetics Theory & Methodology Hardware & Architecture Robotics & Automatic Control Software + Graphics

Clinical Medicine

Gastroenterology Hygiene & Public Health Neurol & Neurosur Cancer Immunology Radio. & Nuc. Clinical Medicine. Gen. & Internal Clinical Medicine. Surgerv Ophthalmology Endocrinology Pathology Urology Cardiovas. system Pediatrics Andrology Pharmacy Dentistry Fertility Anesthesiology Der. & Veneral Diseases Hematology Respiratory System Pharmacology Nephrology Allergy Otorhinolaryngology Misc. Clinical Medicine Geriatrics Psy. & Behavioural Sci. Addictive Diseases Trop. Medicine Orthopaedics Vet. Clinical Medicine. Arthritis & Rheumatism Obst. & Gyn

States and Union territories of India

ANDAMAN & NICOBAR	AND
ANDHRA PRADESH	APR
ARUNACHAL PRADESH	ARN
ASSAM	ASM
BIHAR	він
CHANDIGARH	CHD
DELHI	DEL
GOA	GOA
GUJARAT	GUJ
HARYANA	HAR
HIMACHAL PRADESH	HIM
JAMMU & KASHMIR	J&K
KARNATAKA	KAR
KERALA	KER
MADHYA PRADESH	МАР
MAHARASHTRA	MHA
MANIPUR	MAN
MEGHALAYA	MEG
MIZORAM	MIZ
ORISSA	ORI
PONDICHERRY	PON
PUNJAB	PNJ
RAJASTHAN	RAJ
SIKKIM	SIK
TAMIL NADU	TAM
TRIPURA	TRI
UTTAR PRADESH	UPR
WEST BENGAL	WBN

.

.

.