Specialty Chemicals

Carboxylated Styrene Co-Polymers (Specialty Additive During Compound and/or Standalone Product)	ing, 4
Mineral Reinforced Nylon-6 (Creation of Suitable Interphase Between Res andReinforcement)	sins 5
Impact Resistant Nylon-6 Alloys & Composites (High Impact Alloys and Composites of Nylon-6 Through Reactive Processing Technologies	5
Sulfonated Melamine Formaldehyde (Stable, Low Salt containing Sulfonated MelamineFormaldehyde)	6
Para Formaldehyde Production (Plant using evaporation and drying process)	6
Water Treatment Chemicals	7
Leather Finishing Chemicals (Casein & Casein-Free Leather Pigment Finishes)	7
Clarizyme (Alkaline Protease Enzyme for Dehairing)	8
Butyl Hydroxy Toluenes (BHT)	8
Boiler Feed Water Conditioning Treatment	9
Dimers of Alpha Methyl Styrene (Intermediate for Polymer Reaction)	9
Diphenyl Oxide Ether (Speciality Chemical for Process Industry and Perfumery Compounding)	10
Sodium Chloride (A.R. & I.P. Grade)	10
Vanadium Pentoxide (Recovery from Vanadium Bearing Sludges of Alumna Industry)	11
Calixarenes	11
Industrial Aerosol Sprays (Aerosol Formulation for Industrial Maintenance Applications)	12
Potassium Persulphate (An Oxidant)	12
Flame Retardant Nylon-6 Production: Through Reactive Processing Techniques	13
Reactive Distillation Technology	13
Activated Carbon (From Natural Woody Resources)	14

Soil Biotechnology (SBT) (Waste Processing and Utilisation)	14
Preparation of Flux Based on Triple Salts	15
Production of Tabular Alumina from Indeginously Available Calcined Alumina	15
Recovery of Vanadium Pentoxide (From Vanadium Bearing Sludges of Alumina Industry)	16
Production of Lithium Carbonate (From Indian Lithium Bearing Minerals Lipidolit)	16
Recovery of Nickel (From Spent Nickel Catalyst)	17
Production of High Grade Wolframite Concentrate/ APT (From Lean Tungsten Ores)	17
Recovery of Valuable Minerals from Beach Sands and Production of Clea Concentratesof Zircon Sillimanite, Ilmenite, Garnet, Monazite etc.	in 18
Production of Chemical Manganese Di-oxide	18
Production of Electrolytic Manganese Do-oxide	19
Production of Castings by In-mould Treatment with Electric Current	19
Total Lime and Sulphide-free De-hairing in Hydes/ Skins Using Enzymes	20
Formaldehyde Free Polymeric Syntan	20
Chromium-Silica Tanning Agent	21
Chromium-Iron Tanning Agent	21
Organo-Metallic Polymeric Syntan	22
Synthetic Aluminium Tanning Agent	22
Aluminum Based Syntan (Alutan)	23
High Performing Syntan Based on Aluminium and Chromium (ALCROTAN)	23
Vegetable Tanning Extract	24
Acrylic Syntan	24
Protein Based Syntan Cum filler	25
Keratin Hydrolysate	25

Phosphated Fatliquor	26
Phosphorilated Fatliquor	26
Sulphited Fatliquor	27
Acrylic Medium Soft Binder for Leather Finishing	27
Acrylic Soft Binder for Leather Finishing	28
Electrical Insulation Coating	28
Aerosol Formulation	29

Phosphamidon Production

DESCRIPTION

- The process involves chlorination, condensation, concentration and purification.
- The process incorporates an on-line monitoring system in chlorination reactor.
- Needs appropriate effluent disposal systems.

Advantages

- Process parameter optimisation and built in plant practices reduce the pollutant emissions. Specially designed solvent recycle system enables optimum utilisation of solvent
- Estimated investment for battery limit plant of 300TPA is around Rs.25 million

Target Countries

- China
- African countries
- Other developing countries

Applications

• Manufacturers of insecticide for several crops

Current stage of development Standardised on pilot scale of 3 kg per batch product

Collaboration options Process know-how, Basic design package, Process demonstration, implementation and commissioning

DESCRIPTION

- Process/Technology leads to manufacturing of caboxylated styrene copolymers in powder or emulsion form. The process include multi step polymerization through emulsion polymerisation route
- Incorporation of reactive moities capable of inducing reactivity/ interaction between pairs of unmiscible polymers like Nylon-6, polyesters and Styrenics etc

Advantages

Target Countries

Europe

Japan

China

North America

• Use as compatibiliser for Nylon-6 alloys

- - Collaboration options
 - IPR details

SPECIFICATIONS

Raw materials

Equipment

Diethylacetoacetamid Chlorine gas Sodium bicarbonate Trimethyl phosphite Monochloro benzene

Chlorinator Solvent distillation units Vessels/ Tanks, Reactor, Boiler Azeotropic distillation unit Thin film evaporator

Organisation

Regional Research Laboratory (Jorhat)

Cross Reference

Organisation Page 169

Speciality Additive During Compounding, and/or Standalone Product

Applications

• As an additive for compatibilisation of immiscible polymers. Particularly styrenics

• Use as an emulsion

Current stage of development Tested, Available for demonstration

Further research, Development support, Information exchange

Patents: Granted

Organisation

Gujarat State Fertilisers and Chemicals Ltd.

Cross Reference

Mineral Reinforced Nylon-6

Creation of Suitable Interphase Between Resins and Reinforcement

Impact Resistant Nylon-6 Alloys & Composites High Impact Alloys and Composites of Nylon-6 Through

Reactive Processing Technologies

DESCRIPTION

- The technology includes the treatment process for the mineral surfaces to be made appropriately suitable for coupling with resin matrix
- Treatment of the mineral with suitable coupling agents and process makes them compatible with nylon-6 matrix • and imparts value addition to otherwise an inexpensive mineral
- Coupling reactor between the matrix and the mineral making the composites to retain their properties under shear • during processing

Advantages

- Higher thermal resistance
- Paintability online
- Predictable shrinkage

Target Countries

• Most of the developing countries

Applications

- Engineering polymer compounding
- Polymer composites mainly for uses in automotive sector

Current stage of development Commercialised

- Collaboration options Further research, Development support, Information exchange
- **IPR** details Patents: Granted

DESCRIPTION

- Generation of high impact alloys and composites of Nylon-6 in different range of impact resistance
- With variation in the alloying dispersed phase (type and content), range of materials with possibility of customizing as per customer requirement can be created
- Compatibilising process for the alloys, which makes the phases of generally immiscible polymer system/stable during adverse, stresses encountered during processing

Advantages

- Impact resistance in different range
- Moisture resistance and dimensional stability
- Flexibility with no effect on thermal resistance

Target Countries

- Developing countries
- South Africa

Applications

Organisation

Gujarat State Fertilisers and Chemicals Ltd.

Cross Reference

Organisation Page 154

Engineering plastics

Automotive sector

Appliances

• Housings for electronics

Current stage of development Tested, Available for demonstration • Collaboration options

Further research, Development support IPR details Patents: Granted

Organisation

Gujarat State Fertilisers and Chemicals Ltd.

Cross Reference

Sulphonated Melamine Formaldehyde

Stable, Low Salt Containing Sulphonated Melamine Formaldehyde

Para Formaldehyde Production

Plant Using Evaporation and Drying Process

DESCRIPTION

Advantages

• Raw material consumption is less

• Milder and non-corrosive operating conditions

• Lower reaction cycle period

Target Countries

European countries

• Gulf countries

Sri Lanka

Pakistan

- Melamine is condensed with formaldehyde in an aqueous and alkaline medium followed by sulphonation. The sulphonated mass is polymerized in acidic medium. Finally product is stabilised at an elevated temperature
- Simplified process steps with milder and non-corrosive operating conditions. Reaction cycle product is lower

Applications

- Useful for slabs, beams, columns and areas of high steel congestion and thin sections to achieve impermeable honey comb free, high quality concrete
- Highly recommended for roof slabs, water tanks, basement, foundation, floorings, bridges, dams, decks etc
- Current stage of development Commercialised
- **Collaboration options** Joint venture, Marketing agreement
- **IPR** details Patents: Applied for

DESCRIPTION

- A low cost vacuum operational plant employing evaporation and drying
- Offers flexibility to produce products with 91-96% purity
- A small scaled 5 tons per day plant

Advantages

Target Countries

• China and Far-East

Middle East

Africa

- Low cost plant: The plant costs US\$0.8 million and has a capacity of 5 Tons day
- Cheaper and smaller in size vis-à-vis those offered by the European manufacturers

- integration

Organisation

Gujarat State Fertilisers and Chemicals Ltd.

Cross Reference

Organisation Page 154

SPECIFICATIONS

Capacity	5 Tons per day
Capital expenditure	US\$ 0.8 million
Operating costs	\$180 per ton of finished goods
Alternate technologies	None

Applications

• Applicable in upstream or downstream

• Used as fungicides, disinfectants, adhesives, hardener, contraceptive creams

• Other applications are the same as formaldehyde's

Current stage of development In industrial use **Collaboration options** Open to all options

Organisation

Simalin Chemical Industries Ltd

Cross Reference

Water Treatment Chemicals

Leather Finishing Chemicals Casein & Casein-Free Leather Pigment Finishes

DESCRIPTION

- Phosphonate based blend of multimetal corrosion inhibitors, dispersants and scale inhibitor
- Combats corrosion and scale problems in cooling water applications
- It has a good hydrolytic stability and sequestration properties, useful for cooling water systems
- National Award Winner--1993

Advantages

Scalewin-1

Zinc phosphate based corrosion and scale inhibitor, which can be used for trouble free operation of most of the cooling water systems

• Scalewin-2

Azole based synergistic blend of multimetal corrosion and scale inhibitor suitable for copper and brass metal based cooling water systems including power plant

Target Countries

All countries

Applications

- Power plant cooling tower/ cooling water system
- Circulating cooling water system for heat exchangers in chemical process plants

Current stage of development

- Commercialised
- **Collaboration options** Marketing agreement
- **IPR** details Secret know-how

DESCRIPTION

- Improvement in grinding operation for the pigment which saves electric power and man power
- Improvement in additives
- In market only parent colours are available -Alchemy does Colour Matching (colours required by the tanners) thereby saving inventory

Advantages

- Better covering on the leather thereby saving cost for the tanner
- Life duration is increased

Target Countries

- Sri Lanka, Bangladesh, Nepal
- Hong Kong, China
- East Africa (Tanzania), other African countries
- Italy, China, Germany, Vietnam, Indonesia

• IPR details

SPECIFICATIONS

Scalewin-1 Appearance

Sp. Gravity pН

Scalewin-2 Appearance Sp. Gravity

Colourless to pale yellow liquid 1.050.05gm/cc less than 2

Pale yellow liquid 1.1 <u>+</u> 0.05gm/cc

Cross Reference

Gujarat Alkalies & Chemicals Ltd

Organisation

Organisation Page 153

Applications

• Finishing leathers

Current stage of development

In industrial use

- **Collaboration options**
- Marketing agreement
- Secret know-how
- Trademark: "ALCHEM"

Organisation

Alchemy Leather Pigments & Auxiliaries Pvt. Ltd

Cross Reference

Clarizyme **Alkaline Protease Enzyme for Dehairing**

Butyl Hydroxy Toluenes (BHT)

DESCRIPTION

- A solid-state fermentation technique for enzyme production by Aspergillus flavus strain using wheat bran as substrate. This new enzyme formulation loosens hair from skins and allows recovery of hair as saleable product
- Eliminates bating step in leather processing. Enzyme has good case inolytic activity over a broad pH range with no effect on the collagen or elastin

Advantages

- Improves quality of the leather
- Solid-state fermentation facilitates enzyme storage in dry form
- This process affords clean option for dehairing and an alternative to the polluting chemical route of lime and sulphide
- A plant with a capacity of 300 TPA will cost approximately USD 0.2 million

Target Countries

• All leather producing countries

Applications

• A microbial depilant, an alternative to conventional chemical process for removal of hair from skins

- Current stage of development Process standardized on bench scale
- **Collaboration options**
- Technology Transfer

DESCRIPTION

- Butylated Hydroxy Toluenes (BHT) is produced by catalytic alkylation of p-cresol with isobutylene
- The product meets international specifications
- Normal effluent treatment measures are sufficient

Advantages

- Optimization of process ensures less operational cost
- Mixture of cresol isomers can also be used as feed and Butylated m-cresol can be separated
- Estimated investment for a battery limit plant of 500 TPA is around USD 0.6 million

Target Countries

All countries

Applications

leather oils

SPECIFICATIONS

Raw materials

Wheat bran

Equipment

Autoclaves Kneader mixers Pulverizer Perforated trays Hot air-blowing system

Organisation

Central Leather Research Institute

Cross Reference

Organisation Page 146

SPECIFICATIONS

Raw materials	Equipment
Isobutene/C4 stream	Reactor
P-cresol	Storage tank
Solvent	Centrifuge
Sodium carbonate	Distillation column
Sulphuric acid	Dryer
	Neutralisation vessels

• Used as general purpose antioxidant in lubricants gasoline, speciality oils, polymers, textile and

Current stage of development

Process standardized at pilot scale one licensee

Collaboration options Process know-how, Demonstration

Organisation

Indian Institute of Petroleum

Cross Reference

Boiler Feed Water Conditioning Treatment

Dimers of Alpha Methyl Styrene Intermediate for Polymer Reaction

DESCRIPTION

- An effective feed water conditioning programme to control corrosion, scaling and deposit formation in any steam generating system
- Film forming amines provide better protection against corrosion and deposits and also extends it to after boiler (Turbine Heat Exchange) condensate mixes for protection against oxygen related corrosion

Advantages

- Comprehensive corrosion control: Impenetrable polyamine film provide physical barrier to corrodants
- Energy Savings: Fully organic product does not add to system TDS, resulting in reducing blow down and hence fuel efficiency
- Non-Toxic: A single dose liquid replaces conventionally used Sulphide, Hydrazine, Morpholine, Phosphate etc

Target Countries

- Bangladesh, Sri Lanka
- Thailand, Indonesia, Vietnam, Malaysia
- Middle East

Applications

- Steam Generating Boilers in Process/ Power plants
- Tested and proven on steam generating boilers of up to 160 Bar
- Applied to all kinds of industries: Sugar, Paper, Textiles, Petrochemicals and Oil Refineries

Current stage of development

- Commercialised
- **Collaboration options** Technical co-operation
- **IPR** details Trademark: "Eloguard / Elomine"

DESCRIPTION

- Speciality product manufactured by dimerisation of AMS using special catalyst system
- Reaction quite complex and requires control of process condition to achieve desired quality

Advantages

- Globally a first mover
- Better than sulphur on application (could replace sulphur based mercaptan)
- Cost competitive
- Having a purity exceeding 98.5%

Target Countries

• USA

- Western Europe (Spain)
- East Asia (Japan, Korea)
- Israel
- Russia (CIS)

- Process Industries based on polymer reactions
- In industrial use • Collaboration options **Marketing agreement** • IPR details Secret know-how

SPECIFICATIONS

Appearance Odour pН Temperature stability Freezing point Density Toxicity Environmental impact

White to colourless Liquid Ammoniacal Above 11 550 degree C -1 degree C 0.98 + /- 0.1 Ld50 on rat oral 55 g/kg None

Organisation

Cross Reference

Organisation Page 151

SPECIFICATIONS

Appearance	
Colour, HU, (max.)	Colourless Liquid
Purity as unsaturated Dimers,	20
% By mass, (min.)	98.0
Unsaturated Dimer content, percent by mass	
Substituted 1-pentene	93.1
Substituted 2-pentene	7.1
Saturated Dimer, percent by mass, (max.)	1.0
AMS Monomer, percent by mass, (max.)	0.5
Specific gravity, 27C / 27C	0.980 0.990
Boiling Point, C	300-320

Elof Hansson

Applications

• Molecular weight modifier in radical homopolymerisation and copolymerisation of Olefinic Monomers such as Styrene, Alkyl Styrene, Acrylonitrile, Acrylates and Alkyl Acrylates

- Current stage of development
- Trademark: "Herdillia"

Organisation

Schenectady Herdillia Limited

Cross Reference

Diphenyl Oxide Ether

Speciality Chemical for Process Industry and Perfumery Compounding

Sodium Chloride A.R. & I.P. Grade Sodium Chloride

DESCRIPTION

- The process is based on high temperature vapour-phase dehydration of phenol over a novel unsupported catalyst
- A commercial scale plant designed for a capacity of 3000 MTA (Metric tons per annum)

Advantages

- Produced by chloride free route so not hazardous to health
- Produced by a cleaner process using rare solid catalyst developed in-house

Target Countries

- USA
- Western Europe (Spain)
- East Asia (Japan, Korea)
- Israel
- Russia

Applications

- Process industry (Heat transfer media, surfactant, flame retardants, blowing agents)
- Perfumery compounding like alkylated DPO disulphonate
- Current stage of development In industrial use
- **Collaboration options** Marketing agreement
- **IPR** details Secret know-how Trademark: "Herdillia"

DESCRIPTION

- Simple process involving washing of raw salt, preparation of saturated brine; removal of impurities in brine by precipitation followed by filtration and then forced evaporation
- Normal effluent treatment measures are sufficient

Advantages

• Estimated investment for a battery limit plant of 50 TPA is around USD 0.01 million

Target Countries

All countries

Applications

SPECIFICATIONS

Appearance	Clear Liquid
Colour, HU, (max.)	20
Purity (Percent of mass) Min	99%
Specific gravity, 27C / 27C	1.070-1.076
Chlorine, mg/Kg (Max)	5.0

Organisation

Schenectady Herdillia Limited

rose	Reference
1022	NEICICIU

Organisation Page 173

SPECIFICATIONS

Raw materials	

Crude salt Lime Soda ash

Storage tanks Tray driers Precipitation tanks Pumps

Equipment

Boiler Evaporation pans

• In laboratory work and in pharmaceutical preparations

Current stage of development Process standardized at pilot scale

Collaboration options

Technology Transfer

Organisation

Central Salt & Marine Chemicals **Research Institute**

Cross Reference

Vanadium Pentoxide

Recovery from Vanadium Bearing Sludges of Alumna Industry

PECIALITY CHEMICALS

DESCRIPTION

- Simple, low capital process involves dissolution of sludge in water followed by filtration, acidification and precipitation
- Needs appropriate disposal systems

Advantages

- Simple, low capital process
- Estimated investment for a battery limit plant of 3 TPD of sludge (in 3 shifts) is around US \$ 0.13 million
- Enables 90% of vanadium recovery with over 98% purity

Target Countries

- South American Countries
- African countries
- China

Applications

- In production of Ferro-vanadium, which is used in alloy steels, and for catalyst to produce sulphuric acid
- Current stage of development Process standardized at a scale of 2 TPD ofsludge
- **Collaboration options** Process know-how, Plant lay out, QA methods, Data on effluents, implementation and commissioning

DESCRIPTION

Calixarenes

• Calixarenes have a unique bucket-like structure with hydrophobic binding pockets on the upper rim and spherand-like cation binding sites on the lower rim

Advantages

- A unique cost-effective process for producing Calixarenes
- High melting points
- Very high thermal and chemical stability with low solubility in many solvents
- Low toxicity

Target Countries

• All countries

Applications

- Collaboration options

SPECIFICATIONS

Raw materials

Vanadium sludge of average 10% V2O5 Hydrochloric acid Ammonium chloride Equipment

Organisation National Metallurgical Laboratory

Cross Reference

Organisation Page 165

Leaching, percipitation & storage tanks Filter press Centrifuge

Centrifugal & acid pumps

Drier

Muffle furnace

75

Highly versatile in application

• These molecules can be tailored for separation and other processes such as sensors, catalysts, intermediates etc. in a wide range of applications in the industry

• Applied in chemistry, biochemistry and pharmaceutical industry

Current stage of development Commercialised

Open to all options

Organisation

DCM Shriram Consolidated Limited

Cross Reference

Industrial Aerosol Sprays

Aerosol Formulation for Industrial Maintenance Applications

Potassium Persulphate An Oxidant

DESCRIPTION

• Industrial aerosol sprays such as Cleaners, Lubricants, Rust Preventives, Protective Coatings, Mould Release Agents, Conformal Coatings for PCBs

Advantages

- Environmental friendly, Saves time energy & money
- Instant maintenance, Efficient results

Target Countries

All countries

Applications

- All types of industries such as textile, automobile, engineering, electrical & electronic industries, shipping, defence, railways
- Current stage of development In industrial use
- **Collaboration options** Joint venture, Royalty

DESCRIPTION

- A powerful oxidant, soluble in 50 parts of water (insoluble in Alcohol), with good stability at room temperature
- Decomposes gradually by loosing available oxygen (5.8%), at high temperature decomposition is rapid

Advantages

• Soluble in 50 parts of water

Target Countries

• USA

Europe

• Good stability at room temperature

Organisation

DCM Shriram Consolidated Limited

Cross Reference

Organisation Page 150

SPECIFICATIONS

Appearance M. Formula M. Wt. Composition Solubility	White crystalline powder K2S2O8 270.32	
Stability pH Environment liability	Good at room temperature Alkaline None (avoid prolonged contact with skin)	

Applications

• Catalyst in polymerisation of monomers like Acrylonitrile, Styrene butadiene, Vinyl chloride, Vinyl acetate and Acrylic esters

• Bleaching agent in textiles, Soaps and Pharmaceutical industries

• In Photography ("ANTHION") to remove traces of Triosulphate (Hypo) from plates and paper

• Analytical chemistry

Current stage of development

In industrial use

• Collaboration options

Information exchange, Research, Technical co-operation

Organisation

Gujarat Persalts Private Limited

Cross Reference

Flame Retardant Nylon-6 Production **Through Reactive Processing Techniques**

Reactive Distillation Technology

DESCRIPTION

- The technology/process leads to generation of environmental friendly Nylon-6 and its composites (glass fibre and mineral) having V-0 class of flames resistance characteristics suitable for markets in electrical and electronic sector
- Variation in level of reinforcements like glass and mineral, and colourability makes these materials/ processes amenable to customisation as per customer requirement

Advantages

- Low smoke generation during fire vs competitive materials
- Less corrosive to processing machines
- No major sacrifice in other materials properties
- Cost effective vs. competitive materials

Target Countries

- South Africa
- Most of developing countries
- Textile manufacturing countries

Applications

- Applicable to engineering polymer compounding and polymer composites
- Serving electrical and electronic sector

Current stage of development

- Tested, Available for demonstration
- **Collaboration options**
- Further research, Development support
- IPR details Patents: Applied for

DESCRIPTION

- Pilot Plant at IITB with capacity of 20 Kg/day (Esterification reaction)
- Can be used to separate near boiling mixtures
- Used for production of Butyl Acetate and Lactic Acid Recovery at Lab stage

Advantages

- Lower energy as no separate distillation process
- Lower equipment cost
- Automatic temperature control

Target Countries

• All countries

SPECIFICATIONS

V-0 FR (Flame Resistance) rating as per UL 94 testing procedures

Organisation

Gujarat State Fertilisers and Chemicals Itd.

Cross Reference

Organisation Page 154

-79

Applications

• Any reversible liquid phase reaction

Hydrogenation

Etherification

Current stage of development Process standardized on pilot scale **Collaboration options** Technical support and process know-how

Organisation

Indian Institute of Technology, Bombay

Cross Reference

Organisation Page 161

Activated Carbon from Natural Woody Resources

PECIALITY CHEMICALS

DESCRIPTION

- Process to produce activated carbon from Bamboo
- Formation involves two steps, first carbonisation and then activation
- Lab scale unit producing 0.5 kg/batch

Advantages

- Readily available source of carbon
- Unique technology

Target Countries

- Tropical countries
- South America
- South Asia

Applications

- Adsorbant
- Fuel
- Catalyst

Current stage of development

- Process standardised on pilot scale • Collaboration options
- Technical support and process know-how

Soil Biotechnology (SBT) Waste Processing and Utilization

DESCRIPTION

- Concerned with recovery of value from wastes
- Process works at mesophelic temperatures and engages a formulated media integrated in a system open to atmosphere
- Process monitoring is achieved by observing bio-indicators of abnormality
- Control is achieved by regulating loading, additives and moisture

Advantages

- Green technology does not generate any harmful waste products
- Data from available field scale facilities indicate that SBT is far superior to any existing technology both in terms of investment and recurring costs
- Viable both in very small to large scale

Target Countries

• All countries

Applications

- systems

IPR details

SPECIFICATIONS	i	
Municipal liquid waste Technology parameter	SBT gardens	Activated sludge process
Plant cost (Cr)/10 MLD Net area of plant (sq.m) Bacteria removal (incl.	3.25 185*185	3.5 95*95
E.Coli) % Total profit in (Lacs/ year) Return on investment	99.99% 12 4%	70% -92 -26%

Indian Institute of Technology, Bombay

Organisation

Cross Reference

Organisation Page 161

81

Waste water processing for reuse

• Non chemical cleaning of swimming pools

• Bath and wash water for recycling for use in toilets

• Municipal and industrial waste water treatment

• Retrofitting conventional energy intensive

• Solid waste conversion to culture grade to fertiliser to soil grade products Pest control in soil and water

Current stage of development

Commercialised

Collaboration options

Technical know how, commissioning and technical services

Patents: Applied for (2)

Organisation

Indian Institute of Technology, Bombay

Cross Reference

Preparation of Flux Based on Triple Salts

Production of Tabular Alumina from Indigenously Available Calcined Alumina

DESCRIPTION

- It is a flux based on triple salts
- The process involves three steps of chemical synthesis to get the desired products
- 20-30% aqueous solution is used for the fluxing of the articles to be galvanised

Advantages

- Reduces the wastage of zinc as dross during the galvanising of iron and iron based alloys
- Pollution problems reduced because of use of ZnCl2/NH4Cl is also reduced

Target Countries

• Developing countries

Applications

• Useful for prefixing in dry galvanising of iron and steels

Current stage of development In industrial use

- Collaboration options Open to all options
- IPR details
- Secret know-how

DESCRIPTION

- The process involve are mixing, pelletising & sintering
- The sintered pellets are then crushed, ground & sieved to desired fractions followed by magnetic separation

Advantages

- No effluent problem
- No pollution hazards
- Grains contains minimum 99.5% alumina
- Apparent porosity 4-5%

Target Countries

Developing countries

SPECIFICATIONS

Raw materials

ZnCl2 , NH4Cl and other two chlorides, surfactants etc

Techno economics

Plant with a capacity of 600 TPA will cost Rs 200 Lakhs. ROI is 25% at selling price of Rs 30,000 per ton

Organisation

National Metallurgical Laboratory, Jamshedpur

Cross Reference

Organisation Page 165

SPECIFICATIONS

Raw materials

Calcined alumina mix (99.5% Al2O3) and additives Techno economics

Plant with 600 TPA capacity would cost Rs 200 lakhs. The ROI works out to be 50% at a selling price of Rs 50,000/- per tonne of tabular alumina

Mixer, Briquetting press, High temperature furnace, Jaw crusher, Roll crusher, Ball mill and magnetic separator

Equipment

Centrifuge etc.

83

Equipment

Reaction

Filter press,

Vessels, Boiler,

Applications

• Manufacture of special refractories such as slide gate bricks etc

Current stage of development Lab scale • Collaboration options Open to all options IPR details Secret know-how

Organisation

National Metallurgical Laboratory, Jamshedpur

Cross Reference

Recovery of Vanadium Pentoxide from Vanadium Bearing Sludges of Alumina Industry

Producing Lithium Carbonate from Indian Lithium Bearing Mineral - Lepidolite

DESCRIPTION

• The process involves the dissolution of sludge in water & filtration followed by the acidification of the filtrate. The Vanadium is then precipitated out from the acidified solution

Advantages

- Enables 90% Vanadium recovery
- Purity 98%

Target Countries

Developing countries

Applications

- It finds application for production of ferrovanadium which is used in alloy steels and also catalyst to produce sulphuric acid
- **Current stage of development** In industrial use
- **Collaboration options** Open to all options
- **IPR details**
- Secret know-how

DESCRIPTION

- The process involves roasting of ground ore with alkali sulphate followed by water leaching and subsequently treating with carbonate salt
- Process developed at a scale of 2 kg/day Lithium carbonate

Advantages

- 90-92% recovery of Lithium
- Purity of Lithium carbonate is 98%
- Process is environment friendly

Target Countries

Developing countries

SPECIFICATIONS

Raw materials

Vanadium sludge (average 10% V2O5), Hydrochloric acid, Ammonium chloride

Techno economics

Plant with a treating capacity of 2 to 3 tonne of sludge/day costs approximately 100 lakhs

Equipment Leaching, precipitation & storage tanks, Filter press, Centrifuge filter, Drier, Muffle furnace, Centrifugal pumps, Acid pumps etc.

Organisation

National Metallurgical Laboratory, Jamshedpur

Cross Reference

Organisation Page 165

SPECIFICATIONS

Raw materials

Equipment

Lepidolite, alkali sulphate, carbonate salts, water, steam etc. Techno economics

Process for 30 TPA lithium carbonate based on 100% capacity utilization, the return on investment will be 40%

High temperature continuous furnace, constant stirred tank reactor, solid-liquid separation unit

Applications

• Ceramics, steel, as fluxing agent, glass lining of water heaters, glass, production of other Lithium chemicals including Lithium metal

Current stage of development In industrial use **Collaboration options** Open to all options **IPR** details

Secret know-how

Organisation

National Metallurgical Laboratory, Jamshedpur

Cross Reference

Recovery Of Nickel from Spent Nickel Catalyst

Production of high-grade Wolframite conc./APT from lean tungsten ores

DESCRIPTION

- Process consists of mixing, heating and reduction to get Ferro-nickel
- The process developed at 5 kg/batch of spent catalyst

Advantages

- 95% Nickel recovery
- For environmental considerations no special measures are required

Target Countries

• Developing countries

Applications

• Useful for alloying element in making of alloy steel

Current stage of development In industrial use

- **Collaboration options** Open to all options
- **IPR** details

Secret know-how

Advantages

• Can utilize low-grade tungsten ores (0.1% WO3) through an integrated approach (physical+ chemical) to APT

• The process was developed on a 25 tpd basis of feed

DESCRIPTION

• No deleterious effects from rejects on environment

Target Countries

Developing countries

Applications

• IPR details Secret know-how

SPECIFICATIONS

Raw materials

Spent nickel catalyst, Mill scale (iron oxide), reducing agents etc

Techno economics

Plant with a capacity to process 2 tons/day of the spent catalyst costs approximately Rs 15 lakhs

Organisation

National Metallurgical Laboratory, Jamshedpur

Cross Reference

Organisation Page 165

SPECIFICATIONS

Equipment **Raw materials** Tungsten ore, reagents for floatation Crusher, Grinder, Sizing and chemicals for solvent extraction, units, WHIMS, leaching and refining

Techno economics

Plant with 100 tpd capacity will require a capital investment of Rs. 425 lakhs

Floatation units, Vainer thickener, Filter, Autoclave, Solvent extraction units, Purifiers, Crystallisers

Equipment

Oil/gas fired furnace,

Reaction vessels

• Useful for lump filaments, high-speed tools, discs, wear resistant parts, engine valves, circuit breakers, chemicals for textiles etc.

Current stage of development In industrial use • Collaboration options Open to all options

Organisation

National Metallurgical Laboratory, Jamshedpur

Cross Reference

Recovery of Valuable Minerals from Beach Sands and Production of Clean Concentrates of Zircon, Sillimanite, Ilmenite, Garnet, Monazite etc

Production of Chemical Manganese Dioxide

DESCRIPTION

- Selected physical separation steps are employed involving gravity, magnetic, high tension separation and floatation techniques
- Process is developed both at bench & pilot plant scale, upto 1 tph

Advantages

 No special provision required for environmental considerations

Target Countries

• Developing countries

Applications

- Manufacture of superior value-added products
- Current stage of development NA
- **Collaboration options** Open to all options
- **IPR** details Secret know-how

DESCRIPTION

- Process does not require electrolysis and post grinding like Electrolytic Manganese Dioxide (EMD)
- The scale of process development being batch wise is @ 1 kg/batch

Advantages

- Process requires 50% less energy than EMD
- Gives valuable by-product Ammonium sulphate
- Environment friendly process

Target Countries

Developing countries

Secret know-how

SPECIFICATIONS

Raw materials

Equipment

Beach sand heavy minerals

Gravity, Magnetic, HT separation, Floatation cells, Grinding mills etc

Organisation

National Metallurgical Laboratory, Jamshedpur

Cross Reference

Organisation Page 165

SPECIFICATIONS

Raw materials

Equipment

Manganese ore, Sulphuric acid, Ammonium carbonate Techno economics

The project cost for 2000 TPA is Rs. 650 lakhs with the working capital for 45 days of Rs 280 lakhs. The ROI is 30% and the Break-even point is 56%

Jaw crusher, Roll crusher, Ball mills, Rotary kiln, Leaching reactor, Storage tanks, Filter and pumps, Boilers etc

Applications

• Useful in dry cell batteries/special particular type batteries in which only CMD is used

Current stage of development Ready for commercialisation • Collaboration options Open to all options IPR details

Organisation

National Metallurgical Laboratory, Jamshedpur

Cross Reference

Production of Electrolytic Manganese Dioxide

Production of Castings By in Mould Treatment With Electric Current

DESCRIPTION

• The scale of the project developed is 50 kg/day

Advantages

- Utilizes low and medium grade manganese ore
- Equipments are indigenously available

Target Countries

• Developing countries

Applications

• Useful in dry cell batteries

Current stage of development In industrial use

- Collaboration options Open to all options
- **IPR details** Secret know-how

DESCRIPTION

- Process is developed at laboratory scale. Upto 0.5 kg ingot casting was conducted
- Process can be "tailor made" for individual castings depending on its shape, geometrical factors and chemical composition

Advantages

- Process eliminates use of Hexachloroethane used for degassing of molten aluminium alloys

• Process is environment friendly

Target Countries

Developing countries

Applications

SPECIFICATIONS

Raw materials

Equipment

Manganese ore, Sulphuric acid Techno economics The project cost for 2000 TPA is

Rs. 1800 lakhs and with the working capital-Raw material (45 days) of Rs. 162 lakhs. Profitability analysis indicates that the ROI is 31% and the Break-even point is 80%

Jaw Crusher, Roll crusher, Ball mills, Rotary kiln, Leaching reactor, Storage tanks, Filter and pumps, Boilers, Rectifier, Cells etc

Organisation

National Metallurgical Laboratory, Jamshedpur

Cross Reference

Organisation Page 165

SPECIFICATIONS

Raw materials

Equipment

Cast grades of Al-alloys or equivalent Techno economics

The process economics study needs to be explored with trials on different types of castings. Investment required on power supply unit, its size depends on capacity of production unit.

AC/DC power supply upto 12 volts with special arrangements to connect the moulds. Suitable Al-alloy melting units sand moulding systems

• Used for Al-alloy castings to reduce its gas porosity, refine cast structure and improve mechanical strength

Current stage of development Lab scale

Collaboration options

Open to all options

IPR details

Secret know-how

Organisation

National Metallurgical Laboratory, Jamshedpur

Cross Reference

Total Lime and Sulphide Free Dehairing in hides/Skins Using Enzymes

Formaldehyde Free Polymeric Syntan

DESCRIPTION

- Enzymatic process to completely eliminate lime/sulphide conventionally used
- The enzymes are extracted from both animal as well as plant sources

Advantages

• Eco-friendly process to produce dehaired pelt without adding to the effluent load

Target Countries

• Developing countries

Applications

- Dehairing in tanning industry
- Current stage of development In industrial use
- Collaboration options Open to all options
- IPR details Patents: Applied for

DESCRIPTION

• The product is essentially an organo-polymeric matrix, which is free from Formaldehyde

Advantages

• Possible to avoid pickling operation by using this syntan which emerges as an effective solution for tackling the problem of TDS associated with the effluent of leather processing industry

Target Countries

Developing countries

Applications

Patents: Applied for

Organisation

Central Leather Research Institute, Chennai

Cross Reference

Organisation Page 146

• Potential application in chrome tanning of leather as an exhaust aid for chrome

Current stage of development In industrial use **Collaboration options** Open to all options • IPR details

Organisation

Central Leather Research Institute, Chennai

Cross Reference

Chromium-Silica Tanning Agent

Chromium-Iron Tanning Agent

DESCRIPTION

- Synthetic mineral tanning agent containing matrix of Chromium and Silica complexed with organic ligands
- Manufacturing process involve are complexation and drying

Advantages

- Product exhibits about 85-95% exhaustion for both Chromium and Silica
- The leather produced by this syntan exhibits excellent fullness with shrinkage temperature of more than 105C

Target Countries

Developing countries

Applications

• Used as a self-tanning agent as well as retanning agent

Current stage of development In industrial use

- **Collaboration options** Open to all options
- **IPR** details
- Patents: Applied for

DESCRIPTION

- Synthetic mineral tanning agent containing matrix of chromium and iron complexed with organic ligands
- Manufacturing process used is complexation followed by drying

Advantages

- Product exhibits around 90-95% exhaustion of both chromium and iron
- Produce leather exhibiting shrinkage temperature of more than 105C

Target Countries

Developing countries

Applications

Equipment

Glass lined reactors,

Boiler, Spray, Drier,

Scrubber, Filter

SPECIFICATIONS

Raw materials

Hexavalent chromium salt, silica salt, reducing agent, organic ligand

Techo economics

The plant with capacity of 200 TPA requires investment of Rs. 500 lakhs

Organisation

Central Leather Research Institute, Chennai

Cross Reference

Organisation Page 146

SPECIFICATIONS

Raw materials

Hexavalent chromium salt, Iron salt, reducing agent, organic ligand

Techo economics

The plant with capacity of 150 TPA requires investment of Rs 400 lakhs

Equipment

Glass lined

Spray, Drier,

reactors, Boiler,

Scrubber, Filter

• Self-tanning agent to produce fuller leather without any drawn grain appearance

• Natural aid for developing various shades based on black and brown, on leathers tanned with this tanning agent by adding non-dye external aids

Current stage of development In industrial use **Collaboration options**

Open to all options

IPR details

Patents: Applied for

Organisation

Central Leather Research Institute, Chennai

Cross Reference

Organo-Metallic Polymeric Syntan

Synthetic Aluminium Tanning Agent

DESCRIPTION

- Its an organic polymeric matrix with ligating sites capable of anchoring metal ions like zirconium, titanium, chromium, aluminium
- Manufacturing process used is sulphonation and condensation followed by drying

Advantages

- Product exhibits around 90-95% exhaustion of metal ion
- Resistant to precipitation of upto pH as high as 5-6, facilitating higher neutralization during post tanning wet operations in leather processing

Target Countries

• Developing countries

Applications

• Self-tanning agent to produce fuller leather without any drawn grain appearance

Current stage of development In industrial use

- Collaboration options Open to all options
- IPR details
- Patents: Applied for

DESCRIPTION

- A formaldehyde free organic matrix irreversibly bonded with aluminium with the help of organic ligands in combination with critical additives having ligating sites
- Manufacturing process used is sulphonation and complexation followed by drying

Advantages

- The white base of the leather enhances dyeability and acts as dye saver
- Leathers tanned with this product do not show any discolouration on ageing

Target Countries

Developing countries

- leather

SPECIFICATIONS

Raw materials

Aromatic hydrocarbon, sulphuric acid, metal salt, organic ligand

Techno economics

Plant with a capacity of 200 TPA requires investment of Rs. 500 lakhs

Organisation

Central Leather Research Institute, Chennai

Cross Reference

Organisation Page 146

SPECIFICATIONS

Raw materials

Aromatic hydrocarbon, sulphuric acid, Aluminium salt, Organic ligand, Polyfunctional polymer

Glass lined reactors, Boiler, Spray drier, Scrubber and Filter

Equipment

Techno economics

Plant with capacity of 100 TPA with investment requirement of Rs 400 lakhs

Equipment

Glass lined

Spray Drier,

reactors, Boiler,

Scrubber and Filter

Applications

• Self-tanning agent for producing white and soft

• Used as retanning and co-tanning agent with BCS, whereby it enhances chrome exhaustion

Current stage of development In industrial use **Collaboration options** Open to all options IPR details

Patents: Applied for

Organisation

Central Leather Research Institute, Chennai

Cross Reference

Aluminium Based Syntan (Alutan)

High Performance Syntan Based on Aluminium and Chromium (ALCROTAN)

DESCRIPTION

- A synthetic tanning material based on complexed aluminium, naphthalein sulphonic acid formaldehyde condensed product as the base matrix
- Primary manufacturing processes used are sulphonation, condensation and complexation followed by secondary process drying

Advantages

- Eco-friendly process for tanning
- Partial replacement for chrome, exhibiting high exhaustability
- Produces soft, supple, full and white leather with little stretch
- Ensures good brilliance with less amount of dye

Target Countries

• Developing countries

Applications

- Tanning industry
- Suede leather
- Current stage of development In industrial use
- **Collaboration options** Open to all options
- **IPR details**
- Patents: Applied for

DESCRIPTION

- A synthetic mineral tanning agent containing chromium and aluminium complexed, naphthalein sulphonic acid being the base matrix
- Primary manufacturing processes used are sulphonation, condensation, complexation and neutralization followed by secondary process drying

Advantages

- Product exhibits about 96% exhaustability
- Ensures rich & uniform dyeing and produces soft and full leather without loaded feel

Target Countries

Developing countries

SPECIFICATIONS

Raw materials

Aromatic compounds, Sulphuric acid, Amino resins, Aluminium salts

Glass lined reactors, boiler, spray drier, scrubber and filter

Equipment

Techno-economics

Plant with a capacity of 3 TPA requires investment of Rs 700 lakhs

SPECIFICATIONS

Raw materials

Aromatic compounds, sulphuric acid, amino resins, aluminium salt, chromium salt

Techno-economics

Plant with a capacity of 3 TPA requires investment of Rs 700 lakhs

Central Leather Research Institute, Chennai

Cross Reference

Organisation Page 146

Organisation

99

Equipment

Glass lined

spray drier,

reactors, boiler,

scrubber and filter

Applications

Retanning agent

Self-tanning agent

Current stage of development In industrial use

• Collaboration options Open to all options

• IPR details

Patents: Applied for

Organisation

Central Leather Research Institute, Chennai

Cross Reference

Vegetable Tanning Extract

Acrylic Syntan

DESCRIPTION

- The extract is manufactured from individual as well as blended vegetable tanning materials
- The process involves size reduction, leaching, concentration, bleaching, spray drying and drying

Applications

• Eco friendly process

Target Countries

Advantages

• Developing countries

- Leather Tanning
- Current stage of development In industrial use
- Collaboration options Open to all options
- **IPR details** Patents: Applied for

DESCRIPTION

 The process involves copolymerization of marine oil under controlled conditions to obtain product of desired chain length and functional properties

Advantages

Applications

 Leathers treated with acrylic syntan have fullness, tightness of grain, good buffing characteristics and improved dye intensity

Target Countries

• Developing countries

IPR details

SPECIFICATIONS

Raw materials

Tanniferrous plant materials like Wattle, Myrobalan, Avaram counter current leaching etc

Techno economics

Plant with a capacity of 16 Tons per day requires investment of Rs 2000 lakhs

Equipment

Stainless steel simulated system, triple effect evaporator, finisher, spray drier, crusher, bleaching vessel, boiler, conveyor, electrical hoists

Organisation

Central Leather Research Institute, Chennai

Cross Reference

Organisation Page 146

SPECIFICATIONS

Raw materials

Sulphated fish oil, Acrylic acid, Methacrylic acid, Alginic acid, Butyl acrylate, Potassium persulphate, Sodium metabisulphate

Techno-economics

Plant with a capacity of 3 tons per day requires investment of Rs 75 lakhs

Acid resistant glass lined S.S. reactor with accessories, anchor type stirrer, SS gear pump, boiler

Equipment

• Retanning material for chrome tanned leather

Current stage of development In industrial use Collaboration options Open to all options

Patents: Applied for

Organisation

Central Leather Research Institute, Chennai

Cross Reference

Protein Based Syntan Cum Filler

Keratin Hydrolysate

DESCRIPTION

• The process involves co-polymerisation of protein Hydrolysate with Acrylic resin to obtain a composite of molecular weight in the range of 15000-20000 KD

Advantages

- Product ensures exhaustion of dye bath to the tune of 98%
- Resulting leather becomes more amenable to buffing for corrected grain as well as suede leathers
- This technology provides an economical as well as eco-friendly option of utilizing proteinous wastes of any industry for preparing value added products

Target Countries

• Developing countries

Applications

- Filler cum syntan in leather processing industry
- Processing glazed finished leathers

Current stage of development In industrial use

- **Collaboration options**
- Open to all options
- **IPR details**

Equipment

with stirrer

Round bottom

flask, autoclave,

beaker/container

Patents: Applied for

DESCRIPTION

• A mixture of low molecular weight polypeptides, in the form of powder, prepared by keratinous proteins with alkali, followed by concentration and spray drying

Advantages

• Better compatibility in comparison to conventional synthetic leather fillers because of its proteinous nature

Target Countries

Developing countries

Applications

IPR details

SPECIFICATIONS

Raw materials

Proteinous material like leather shavings/ trimmings, fleshings, buffing dust, acrylate, antimicrobial agent

Techno-economics

Plant with a capacity of 3 tons per day requires investment of Rs 700 lakhs

Organisation

Central Leather Research Institute, Chennai

Cross Reference

Organisation Page 146

SPECIFICATIONS

Raw materials

Keratinous materials like poultry feathers, animal hair, horn, hoof, alkali like Sodium hydroxide

Hollander beater, digester, filter press, evaporator, spray drier

Equipment

Techno-economics

Plant with a capacity of 600 kgs per day requires investment of Rs 120 lakhs

103

• Use as retanning agent as well as filler in leather processing industry

• For upgradation of the lower grades of leathers by selective filling to ensure imparting fullness

Current stage of development In industrial use • Collaboration options Open to all options

Patents: Applied for

Organisation

Central Leather Research Institute, Chennai

Cross Reference

Phosphated Fatliquor

Phosphorilated Fatliquor

DESCRIPTION

• The process involves interesterification of glycerides of low I.V. veg/ marine/ animal oil, and subsequent phosphating of the ester under hot air current in the presence of catalyst at 80-90C

subsequent neutralization to pH 7.0 - 7.5

DESCRIPTION

Advantages

 Leathers treated with acrylic syntan have fullness, tightness of grain, good buffing characteristics and improved dye intensity

Target Countries

• Developing countries

Applications

- Leather industry
- Textile industry
- Cosmetic industry

Current stage of development In industrial use

- **Collaboration options** Open to all options
- **IPR details**
- Patents: Applied for

Advantages

Environment friendly

Target Countries

Developing countries

SPECIFICATIONS

Raw materials

Vegetable/ marine/ animal oil of iodine value < 100, PEG, Sodium hexameta phosphate/ tripolyphosphate

Organisation

Central Leather Research Institute, Chennai

Cross Reference

Organisation Page 146

SPECIFICATIONS

Equipment

Vegetable Oil, PEG, Orthophosphoric acid

SS Reactor, Thermic Fluid System

Techno economics

Raw materials

Plant with a capacity of 1 ton per day requires investment of Rs 75 lakhs

Equipment

SS Reactor,

system

Thermic fluid

• Process involves interesterification of oils with polyethylene glycol, followed by phosphorilation and

Applications

Manufacturing washable leathers

• Manufacture of softy upper from cow/buffalo hides and goat skins

Current stage of development In industrial use

Collaboration options

Open to all options

IPR details

Patents: Applied for

Organisation

Central Leather Research Institute, Chennai

Cross Reference

Sulphited Fatliquor

DESCRIPTION

• The process involves sulpho-oxidation of vegetable/marine oil in the presence of catalyst

Advantages Environment friendly

- **Target Countries**
- Developing countries

Applications

- Manufacture of softy upper from cow/buffalo hides and goat skins
- Current stage of development In industrial use
- Collaboration options Open to all options
- **IPR** details Patents: Applied for

DESCRIPTION

• The process involves co-polymerisation of Acrylic esters and Vinyl monomers in presence of catalysts in order to obtain a film of medium hardness and gloss on leather to be finished

Advantages

- Products improved functional properties
- Forms medium, hard and stretchy film on leather with good fastness properties. The film is resistant to ageing and light

Target Countries

Developing countries

Applications

SPECIFICATIONS

Raw materials

Vegetable oil, marine oil, Sodium bisulfite

Techno economics

Plant with a capacity of 1 Ton per day requires investment of Rs 75 lakhs

Organisation

Central Leather Research Institute, Chennai

Cross Reference

Organisation Page 146

SPECIFICATIONS

Raw materials

Acrylic ester, Acrylic monomer, emulsifier, catalyst

Techno economics

Plant with a capacity of 1 ton per day refrigeration system requires investment of Rs 200 lakhs

Stainless steel reactor, stainless steel blenders, filter,

Equipment

pump, boiler,

Equipment

SS Reactor,

System

Thermic Fluid

• Used in leather finishing formulation

Current stage of development In industrial use • Collaboration options Open to all options IPR details

Patents: Applied for

Organisation

Central Leather Research Institute, Chennai

Cross Reference

Acrylic Soft Binder for Leather Finishing

Electrical Insulation Coating

DESCRIPTION

• The process involves co-polymerisation of Acrylic esters and Vinyl monomers in presence of catalysts in order to obtain the required chain length and degree of polymerisation

Advantages

- Products improved functional properties
- Forms soft, adhering, stretchy film on leather with good fastness properties and cold crack as well as scuff resistance. The film is resistant to swelling
- The binder does not load the grain, therby retaining the natural look and feel of leather

Target Countries

Developing countries

Applications

• Used in leather finishing formulation especially for soft upper leathers

Current stage of development In industrial use

- Collaboration options
- Open to all options **IPR** details
- Patents: Applied for

DESCRIPTION

- One component, ready to use system
- High electric strength:- 55 kV/mm
- Excellent resistance to moisture
- Resistance to acids, alkalies & chemicals
- Good abrasion and scratch resistance
- Thermally stable upto 200°C
- Quick drying at room temperature

Advantages

- Simple application by brush or spray technique
- Single handed operation, no skilled manpower
- No special surface treatment before application
- Application on surfaces having any geometry
- Cost effective as compared to conventional methods

Target Countries

Developing countries

Applications

SPECIFICATIONS

Raw materials

Acrylic ester, Acrylic monomer, emulsifier, catalyst

Techno economics

Plant with a capacity of 1 Ton per day refrigeration system requires investment of Rs 200 lakhs

Organisation

Central Leather Research Institute, Chennai

Cross Reference

Organisation Page 146

SPECIFICATIONS

Single component, air drying, Insulation coating for electrical & electronic industries
Thermoplastic copolymer
Red, Yellow, Blue, Clear
55 kV/mm
Upto 200°C

Equipment

Stainless steel

steel blenders,

reactor, stainless

filter, pump, boiler,

• Electrical equipments where phase to phase/ phase to earth clearances are critical

• To form insulated bus-bar systems

• For indoor as well as outdoor installations to avoid flashovers due to vermin or moisture entry

• To reduce the leakage current through the body of outdoor as well as indoor installations

Current stage of development

In industrial use

• Collaboration options

Open to all options

IPR details

Patents: Applied for

Organisation

SKFormulations

Cross Reference

Aerosol Formulation

Cyanoacrylate Adhesives

DESCRIPTION

- Aerosol formulation of industrial aerosols such as cleaners, rust preventives, protective coatings, mould release agents, conformal coatings for PCB etc.
- The company is ISO 9002 certified
- Approved by BTTG OEKO TEX, C-dot (Department of Telematics), CACT and are conforming to US military specification
- Recommended by MAYER, VOLTAS, TERROT, BATLIBOI, Bajaj, Mahindra, Telco, Exide, Fiat etc

Advantages

- Environmental friendly
- Saves time
- Saves energy & money
- Instant maintenance
- Efficient results
- Prolonged equipment life and reduced breakdown in the industry

Target Countries

- Developing countries
- Middle east
- South Asian countries

Applications

- Textile industry
- Automobile engineering
- Electrical & electronic industries
- Shipping
- Defence
- Railways
- Current stage of development In industrial use
- **Collaboration options** Joint venture, Royality

DESCRIPTION

- Condensation polymerization of an ester of cyanoacetic acid with an aldehyde and later modification in anhydrous atmosphere
- An over all product yield of the order of 80-85% with the purity of 95-99%
- Normal effluent treatment measures are sufficient

Advantages

• Estimated investment for a battery limit plant of 1 TPD is around USD 0.08 million

Target Countries

- African countries
- China
- South American countries

- etc.
- lenses, etc.

Current stage of development Process standardised at bench level 1kg/batch. Four licensees **Collaboration options**

Organisation

Chemverse Consultants (India) Pvt. Ltd.

Cross Reference

Organisation Page 149

SPECIFICATIONS

Raw materials

Equipment

Esters cyanoacetic acid Aldehyde Phosphorous pentaoxide

Reactors and other simple equipment

Phosphoric acid Anionic and free radical inhibitors

Applications

• Methyl and ethyl cyanoacrylate adhesives are used for bonding metals, plastics, rubbers, glass • Bonding aircraft interior parts, in calculators & computer assembly, medical equipments, optical

Process know-how

Organisation

Indian Institute of Chemical Technology

Cross Reference