Intermediates

Food Grade Hexane by Solvent Extraction Process	2
Menthol Production	2
Improved Process of Dyeing Polyester and its Blends	3
Low-cost Hexamine Production Technology	3
Pyridine & 3-Picoline: Synthesis from Acetaldehyde, Formaldehyde)
and Ammonia	4
Sodium Azide Production Technology	4
Anaerobic Adhesives: Formulations Based on Polyhydric Alcohol Esters Monomers	4
Trimethyl Phosphite: Production from Phosphorous Trichloride & Methanol	4
Turbula: A Shaker Mixture to Homogeneously Mix Chemicals5	
Di Octyl Phthalate(DOP)	5
Nylon Tyre Cord Production	7
Ethanol Production from molasses	7
Eco Friendly Production of Sodium Ferrocyanide	8
Nonyl Phenol: Intermediate for Synthesis of Non-ionic Surfactants	
and Plasticisers	8
PAVS: Vinyl Sulphone Ester Para Anisidine Base	9
Ammonium Persulphate (Ammonium Peroxy Di-Sulphate): Oxidising Agent	9
Sodium Chlorite (50% / 80%): An effective Bleaching Agent	10

Food Grade Hexane by Solvent Extraction Process

Menthol Production

Process Optimised to Extract Menthol from Mentha Arvensis Oil

DESCRIPTION

- Food grade hexane by solvent extraction process; byproduct high aromatic naphtha
- No extra measures are required to those that are already in place to ensure environment compliance

Advantages

- The aromatic rich solvent is further processed to recover solvent and high aromatic Naphtha
- Process accepts feed with high benzene content
- Estimated investment for a battery limit plant of 25000 TPA is around Rs 15 million

Target Countries

- South America
- Africa
- Other developing countries

Applications

• For extraction of vegetable oils

Current stage of development

- Process standardised on pilot scale
- **Collaboration options**
- Technology Transfer

DESCRIPTION

- Process optimised to extract menthol from Mentha Arvensis oil under description
- The process involves the progressive cooling of oil resulting in the separation of 63-65% menthol in crystalline form. The crystals are further processed to obtain bolder crystals
- No special measures are required for environment compliance

Advantages

- Process enables further recovery of menthol from the dementholised oil there by improving the overall yield and economics
- Estimated investment for a battery limit plant of 15 TPA is around Rs. 1.2 million

Target Countries

All countries

Applications

Technology Transfer

SPECIFICATIONS

Raw materials

Raw hexane cut with any benzene content Sulpholane

Equipment

Extractor Solvent recovery column Raffinate wash column Solvent regenerator

Organisation

Indian Institute of Petroleum

Cross Reference

Organisation Page 160

SPECIFICATIONS

Raw materials	
Mentha arvensis oil Alkali Solvent Acid	

Hydrolysis unit Fractionating column Separators Vacuum pump Boilers Chillers, Centifuge

Equipment

29

• Menthol's refreshing aroma and cooling action, along with its stimulant and anti-septic gualities have led to its widespread use for medicinal purposes in pharmaceuticals and cosmetics

Current stage of development

Formulation has been standardized at laboratory level

Collaboration options

Organisation

Regional Research Laboratory (RRL-JM)

Cross Reference

Improved Process of Dyeing Polyester and its Blends

Low-Cost Hexamine Production Technology

DESCRIPTION

- Short dyeing cycle
- Increase levelness
- Low effluent load
- Reduction in processing cost •

Advantages

- Better fabric quality
- Dyeing cost reduced by about 20% compared to conventional method of dyeing

Target Countries

- Bangladesh
- African countries
- China
- Nepal
- Sri Lanka

Applications

- In Yarn Dyeing (H.T.H.P. PACKAGE DYEING MACHINE) Nylon, Wool, Acrylic polyester in blends
- Fabric Dyeing in HTHP MACHINE
- Narrow Fabric Manufacturer in dyeing continuous stage for better penetration
- Textile Processing
- Current stage of development
- Commercialised
- Collaboration options
- Joint venture, Commercial agreement with technical assistance
- **IPR** details Secret know-how

DESCRIPTION

- Reaction of Formaldehyde and Ammonia by evaporation, crystallisation and certerfusing drying
- Continuous plant producing 15 tons per day of Hexamine

Advantages

- Lower power consumption
- Low consumption of the steam
- Cheaper and smaller in size vis-à-vis those offered by the European manufacturers
- Simple to operate

Target Countries

- China and Far-East
- Middle East
- Africa

- integration

Organisation

Mafatlal Dyes & Chemicals Limited

Cross Reference

Organisation Page 163

SPECIFICATIONS

Capacity Capital expenditure **Operating** costs

15 tons per day US\$ 0.75 million \$100 per ton of finished good

Applications

• Raw material in slurry explosives, manufacture of a blowing agent for rubber, and Dinitrosopentamethylene tetramine, and catalyst in manufacture of Bakelite molding powder

• Applicable in upstream and downstream

Current stage of development Commercialised • Collaboration options

Open to negotiations of all kinds

Organisation

Simalin Chemical Industries Ltd.

Cross Reference

Pyridine & 3-Picoline

Synthesis from Acetaldehyde, Formaldehyde and Ammonia

Sodium Azide Production Technology

DESCRIPTION

- Catalytic process using specially designed catalyst to reduce formation of non-useful higher bases like Lutidines and collidines, thereby simplifying the separation problem
- Needs appropriate disposal systems

Advantages

- The product meets the stringent specifications of pharmaceutical and agro-chemical industries
- Estimated investment for a battery limit plant of 100 kg/day is around Rs. 3 million. Production cost is around Rs 80/kg

Target Countries

- China
- South American countries
- African countries
- Indonesia

Applications

- Pyridine and 3-Picoline find wide application in the agro-chemical, rubber and dye-industries
- Pyridine is used in sulpha drugs and antihistamines and stimulants. 3-Picoline is used in Nicotinamide and Coramine
- Current stage of development Standardised at laboratory scale
- Collaboration options Technology Transfer

DESCRIPTION

- Aqueous solution of Sodium nitrite is reacted with alcoholic Sulphuric acid solution to obtain Ethyl nitrite, which is reacted with alkaline Hydrazine hydrate to form Sodium azide
- Needs appropriate effluent disposal systems

Advantages

• Estimated investment for a battery limit plant of 1 TPD is around USD 1 million

- South East Asia
- China
- Other developing countries

Applications

Target Countries

SPECIFICATIONS

Raw materials

Acetaldehyde Formaldehyde and Ammonia

Equipment

General equipment required for a chemical plant.

Organisation

Central Fuel Research Institute

Cross Reference

Organisation Page 145

SPECIFICATIONS

Equipment

Sodium nitrite Ethyl alcohol

Raw materials

General equipment required for a chemical plant

Sulphuric acid Hydrazine hydrate Sodium hydroxide

• Used for preparation of hydrazoic acid, pure sodium and as an intermediate in explosive manufacture

Current stage of development

Process standardised at pilot scale.

Collaboration options

Technology Transfer

Organisation

Indian Institute of Chemical Technology

Cross Reference

Anaerobic Adhesives

Formulations Based on Polyhydric Alcohol Esters Monomers

Trimethyl Phosphite Production from Phosphorous Trichloride & Methanol

DESCRIPTION

- The monomers for the adhesives are prepared by the esterification of Polyhydric alcohols with Methacrylic acid using suitable catalysts and then subsequent treatment yields a product of over 90% purity, is suitable for making anaerobic adhesive compositions
- No special measures are required for environmental compliance

Advantages

• Estimated investment for a battery limit plant of 1 TPD is around USD 0.1 million

Applications

- Aircraft industry structural bonding in aircrafts as pipe sealants
- Bonding gasket eliminators in automobile industry
- Maintenance and repair work

• Europe

Target Countries

USA

Current stage of development

- Process standardised at pilot scale
- **Collaboration options** Technology Transfer

DESCRIPTION

- Produced by reacting Phosphorous trichloride and Methanol in presence of a solvent and an acid scavenger. The resultant slurry is neutralized by alkali solution to separate the organic layers and the aqueous layer. The pure TMP product is recovered from Organic layer comprising TMP, solvent and DMA
- Needs appropriate effluent disposal systems

Advantages

• Estimated investment for a battery limit plant of 5 TPD is around USD 15 million

Target Countries

- China
- India
- USA

- nylon

- Technology Transfer

SPECIFICATIONS		Organisation	SPECIFICATIONS	
Raw materials	Equipment	Indian Institute of Chemical Technology		
Polyethylene glycols	S.S. Reactors	Cross Reference	Raw materials	Equipment
Methacrylic acid Hydro peroxides Quinones Tertiary amines	Filter Press	Organisation Page 159	Phosphorous trichloride Methanol Ammonia DMA Solvent (trimethoxy benzene).	General equipment required for any chemical plant

35

Applications

• A key intermediate in the manufacture of several organophosphatic pesticides like Monocrotophos, DDVP, Phosphomidon etc

• A reagent in organic synthesis, as plasticiser for

• A raw material in the production of fire resistant and fire retardant materials

Current stage of development Process standardised at pilot scale • Collaboration options

Organisation

Indian Institute of Chemical Technology

Cross Reference

Turbula A Shaker Mixture to Homogeneously Mix Chemicals

DI OCTYL PHTHALATE (DOP)

DESCRIPTION

- It charges chemicals with different specific weights and sizes by mixing them evenly in a closed container. The technology makes it permissible to mix wet and dry components
- The mixture container gyrates in 3 dimensional movements

Advantages

- The production process is dust free and hygienic, and the design allows Turbula to be cleaned easily
- The rhythmic and pulsing motion is in three dimensions

Applications

• Applicable to chemical, pharma, R&D labs, testing Labs, food product, bearing and textiles industries

Low volatility excellent compatibility

Advantages

• Permanent flexibility

DESCRIPTION

- Low temperature applications
- Heat ultra-violet resistance

Target Countries

• All countries

Target Countries

- Korea
- Singapore
- China
- South Africa

- Current stage of development
- Commercialised
- **Collaboration options**
- Joint venture and Marketing agreement

Organisation

Hetal Chemicals

Cross Reference

Organisation Page 156

SPECIFICATIONS

Colour
Heat stability (colour)
Specific gravity (20C)
Water content (% by weight)
Acidity (as parent acid)
Ester content

Apha 40 Max. Apha 60 Max. 0.982 Min. // 0.986 Max. 0.05 Max. 0.01 Max. 99.3% Min.

• It is the most common plastisiser used for PVC Compounding/processing. It is compatible with PVC, Vinyl co-polymers, Polystyrene, Poly methyl mathacrylates, Nitro cellulose, Ethyl cellulose etc. It plasticises Cellulose aceto butyrate producing soft films

Applications

• Extrusions, sheetings and films

• Cable industry

Current stage of development Commercialised **Collaboration options** Marketing agreement

Organisation

Ashok Organics Industries Ltd.

Cross Reference

Nylon Tyre Cord Production

Ethanol Production from Molasses

DESCRIPTION

• Raw material Caprolac is converted to Nylon B chips (polymer) which is spun into yarn through melt spinning process. This yarn is converted through twisting/ weaving process into nylon tyre cord fabric

Advantages

- Reinforcement material
- Low cost product

Applications

• Tyre domains

Target Countries

- USA
- Europe
- Developing countries

Current stage of development Commercialised

- **Collaboration options** Technical co-operation
- **IPR Details**
- Secret know-how

DESCRIPTION

- Process uses saccharomyces cerevisiae, with pronounced osmotolerant and ethanol tolerant properties. It tolerates high initial sugar levels of 25-30% in the fermentation broth resulting in the production of 10-13% V/V ethanol, in the course of 30-40 hours with conversion efficiency of over 90%
- Easily adoptable by existing distilleries

Advantages

- Extra investment for an existing 30 kL/day capacity plant is about USD 0.02 million
- Payback period is around one year
- Net saving of 0.6-0.8 kg steam per litre of alcohol produced

Target Countries

• All countries

Applications

Organisation SRF Limited	SPECIFICATION	15
Cross Reference	Raw materials	Equipment
Organisation Page 172	Molasses	Minor modifications in existing plant/ equipment

• Ethanol is a basic raw material for the production of many important chemicals and pharmaceuticals

Current stage of development

Process standardised on commercial scale in two distilleries

• Collaboration options

Technology Transfer

Organisation

Institute of Microbial Technology

Cross Reference

Eco Friendly Production of Sodium Ferrocyanide

Nonyl Phenol

Intermediate in Synthesis of Non-Ionic Surfactants, **Plasticizers and Polyurethane**

DESCRIPTION

- Yellow crystalline, free flowing, dry product
- Prepared by the reaction of Sodium cyanide with Ferrous salt
- Production capacity of 500 kg/ day at Baroda complex

Advantage

• Minimum 99.0% purity of this stable compound at normal temperature

Target Countries

- China
- South America
- All developing countries

Applications

- Manufacture of Sodium ferricyanide
- Blue pigments
- Blue print paper
- Photography
- Manufacture of aniline black
- Metal and leather tanning industry ٠
- Dyeing industry
- Anticaking agent
- Biochemical processes
- Current stage of development Commercialised
- Collaboration options Marketing agreement
- **IPR Details** Secret know-how

DESCRIPTION

- Manufactured by alkylation of Phenol with Nonene in presence of ion-exchange resin catalyst
- Manufacturing facilities has both continuous and batch ways ensuring a mix of flexibility and consistency

Advantages

- Para content of over 93% even for the technical grade against Dow's specification of 92% (min)
- Colour of 10-15 Apha (white filling) as against Dow's specification of 30 Apha
- Phenol content of <500 ppm against Dow's specification of 1000 ppm
- Cost competitive due to economies of scale

Target Countries

All countries

Applications

- Emulsifiers

- IPR details

SPECIFICATIONS

- 1. Assay $(as Na_4Fe(CN)_6.10H_2O)$ % 99.0 min 2. Sulphate (as SO₄) % 0.1 max
- Organisation

Gujarat Alkalies & Chemicals Ltd.

Cross Reference

Organisation Page 153

SPECIFICATIONS

Appearance	Clear Viscous Liquid without sediments
Colour, HU, (max.)	50
Purity, Percent by mass, (min.)	99
Dinonyl phenol, Percent by mass, (max.)	1.0
Phenol, percent by mass, (max.)	0.1
Water content, percent by mass, (max.)	0.05
Specific gravity, 27C/ 27C	0.945
Hydroxyl value, mg KOH/gm	248
Distillation range, initial boiling point, C	288
95% to distill, C	310

Textile auxiliaries

Polyol manufacture

Surfactants

Plastic Additives

• Current stage of development

In industrial use

• Collaboration options

Marketing agreement

Secret know-how

Trademark: "Herdillia"

Organisation

Schenectady Herdillia Limited

Cross Reference

PAVS Vinyl Sulphone Ester Para Anisidine Base

Ammonium Persulphate (Ammonium Peroxy Di-Sulphate) Oxidising Agent

DESCRIPTION

- Speciality in Vinyl sulphone based derivatives and has capacity to manufacture about 180 MT/month of Vinyl sulphone derivatives with various bases
- Only company in India which can produce and deliver Vinyl sulphone based on Ortho anisidine and Para anisidine

Advantages

- Value-added high-quality product to match international standards
- Min. 97% purity

Applications

• Dye Intermediate (speciality blue dyes)

Advantages

- Stable
- Water soluble
- No environment issues

DESCRIPTION

Ammonium pyrosulphate

Strong oxidising agent

• Available oxygen of 7%

Target Countries

- China
- African countries
- Other developing countries

- **Current stage of development** In industrial use
- **Collaboration options** Marketing agreement

Target Countries

- USA
- Europe

- oxidising
- Dye industry manufacture of Aniline dyes
- Pharmaceutical industries manufacture of 3:4:5 Trimethoxy benzaldehyde and oxidation agent in Refampicin

• Current stage of development In industrial use • Collaboration options Information exchange, Research, Technical co-operation

SPECIFICATIONS

Mol. Wt *Physical appearance* Form % Strength pН Insolubles Solubility

311 Off white powder Dry powder Min 95% by N.V. Acidic $\pm 0.3\%$ Light alkaline media

43

Organisation

Reliable Dye Chem Private Ltd.

Cross Reference

Organisation Page 170

SPECIFICATIONS

Odour

M. wt

Purity

Stability

Appearance White granular powder Odourless (NH4)2S2O8 M. formula 228.21 98% 1.98 Sp. gravity Good in absence of water Environment liability None

• Water soluble, odourless white granular powder decomposed in the presence of moisture to produce Ozone and

Applications

- Oil, soap and cotton industries for bleaching and
- In printed circuit boards, as copper oxidiser and zinc etching

Organisation

Gujarat Persalts Private Limited

Cross Reference

Sodium Chlorite (50% / 80%) **An Effective Bleaching Agent**

Defoamer (Anti-Foaming Agent)

DESCRIPTION

- Effective and non-degrading method of bleaching man made fibres
- Water soluble, weakly hygroscopic flakes

Advantages

- Has better oxidising power than Hydrogen Peroxide
- Excellent bleaching that is maintained after resination
- Safely transported and it reacts to form Chlorine Dioxide at the bleaching site

Target Countries

- South East Asia
- USA
- Australia
- Africa (Ethiopia)

Applications

- Only effective bleaching agent that imparts permanent whiteness to man made fibre, cotton, fibre blends, blended fabrics, oils, and fats without degradation
- Used in metal cleaning, water purification and pulp bleaching
- Preparing of bleaching bath
 - Current stage of development In industrial use
 - Collaboration options Information exchange, Research, Technical co-operation

DESCRIPTION

- Defoamer is a chemical, which suppresses the foam generated due to decomposition of carbonates when phosphate rock is acidulated with nitric acid or sulphuric acid
- The manufacturing process consists of two mixing vessels. The Ingredients used are surfactant, water, Additive-I Solution and Additive-II Solution. These are required in fixed proportions, depending upon the concentration of active matter in the surfactant for the desired quality of Defoamer Formulation to be prepared (at least 20% active matter)
- A defoamer plant (2.6 MT per batch) is working since January 2002

Advantages

• Improvement in quality of Defoamer (the specific consumption of defoamer has come down by 33%)

Target Countries

- China
- Indonesia
- USA
- Pakistan
- Other fertiliser manufacturing countries

6.8 - 7.5

SPECIFICATIONS

Appearance Composition Solubility Stability pН Environment liability

White Weakly hygroscopic flakes Hot and cold water Good Alkaline None

Organisation

Gujarat Persalts Private Limited

Cross Reference

Organisation Page 155

SPECIFICATIONS		
pH Specific gravity at R.T		

Specific gravity at R.T	1.05 - 1.10
Flash point (open cup)	> 175 °C
Viscosity	10 - 40 CPs
Active matter	20% +-5
Reduction in foam height	75%

Applications

• Useful in ANP, other complex fertilisers and Phosphoric acid plants (in all fertiliser plant)

Current stage of development

Commercialised

Collaboration options

Open to all options

IPR details

Secret know-how

Organisation

Rashtriya Chemicals and Fertilisers (RCF)

Cross Reference

